

ASTROPHYSICS SEMINAR

Wednesday, 23 April 2008 at 11:00

The effect of a planet on the dust distribution in a 3D protoplanetary disk

Laure Fouchet ETH Zürich, Switzerland

Abstract. With the coming new generation of observation facilities such as ALMA, we hope to discover new planets by direct imaging. For instance, Wolf & D'Angelo (2005) showed that it will be possible for ALMA to detect the gap created by a Jupiter mass planet embedded in a circumstellar disk and orbiting at 5 AU from a solar mass star in a region 140 pc away from the observer. Their study relies on simulations of a pure gaseous disk and the assumption that dust is well-mixed to the gas. But, depending on grain size, this assumption is not always valid and grains decouple from the gaseous motion. We instead use a 3D, two-fluid SPH code and show that the gap created in the dust layer is much more striking than in the gas. We also note a pile up of dust at the external edge of the gap. We therefore expect that gaps created by planets even lighter than 1 Jupiter Mass will be observable with ALMA. I will present our detailed results for different grain sizes and planet masses. Each study will be done for the two different cases of a Minimum Mass Solar Nebula (MMSN) and a standard T Tauri disk, i.e. a compact disk and a more radially extended one. And I will finish with preliminary synthetic images of these structures.

Additional Information

The seminars are given in the ISDC "Pavillon" building Address: ISDC Data Centre for Astrophysics, ch. d'Écogia 16, CH-1290 Versoix WWW: ISDC Seminars: http://isdc.unige.ch/?Science+seminars