Instrument characteristic

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitations

Background maps Energy dependence

Conclusions

PICsIT data analysis

Piotr Lubiński

The 3rd INTEGRAL Data Analysis Workshop 18-20 October 2006

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Instrument characteristic

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitations

Method

Background maps Energy dependency Noise estimation

Conclusions

PICsIT Plxellated Caesium Iodide Telescope

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Instrument characteristics

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitation

Method Background maps Energy dependency Noise estimation

Conclusions

Instrument properties

- array of 64x64 pixels, 8.55x8.55x30 mm
- 16 submodules
- energy range: 175 keV 6.5 MeV (single)
- energy range: 350 keV 13 MeV (multiple)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- field of view: 9°x9° fully coded
- field of view: 46°x46° total
- angular resolution: 12'

Instrument characteristics

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitations

Background maps Energy dependency Noise estimation

Conclusions

Types of events

- single: single pixel
- multiple: several pixels in submodule
- Compton single: single pixels in ISGRI and PICsIT
- Compton multiple: single pixel in ISGRI, several pixels in PICsIT submodule

(ロ) (同) (三) (三) (三) (三) (○)

Instrument characteristics

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitation

Background maps Energy dependency Noise estimation

Conclusions

Observing modes

- photon-by-photon: 64x64 pixels, 1024 energy chan., 64 μ s
- spectral-imaging: 64x64 pixels, 256 energy chan., ≥ 30 min
- spectral-timing: entire detector, 2-8 energy chan., 1-500 ms

Default SPTI settings: 4 ms, 260-364 keV, 364-676 keV, 676-1196 keV, 1196-2600 keV

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Instrument characteristics

Data analysis

Image deconvolution

Mosaic image Spectra Detector light curve

Limitations

Method Background maps Energy dependency Noise estimation

Conclusions

Image deconvolution, dithering observation

```
ibis_science_analysis
ogDOL="./og_ibis.fits[1]"
startLevel="BIN_I"
endLevel="IMA2"
OBS1_ScwType="ANY"
CAT_refCat="$ISDC_REF_CAT"
SWITCH_disablePICSIT="NO"
SWITCH_disableIsgri="YES"
IBIS_IPS_ChanNum=0
SCW1_BKG_P_method=1
PICSIT_inCorVar=0
PICSIT_outVarian=0
SCW1_BKG_picsSUnifDOL="-"
SCW1_BKG_picsSUnifDOL="-"
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Instrument characteristics

Data analysis

Image deconvolution

Mosaic image Spectra Detector light curve

Limitations

Method Background maps Energy dependency Noise estimation

Conclusions

Image deconvolution, staring observation

ibis_science_analysis ogDOL="./og_ibis.fits[1]" startLevel="BIN I" endLevel="IMA2" OBS1_ScwType="ANY" CAT refCat="\$ISDC REF CAT" SWITCH disablePICsIT="NO" SWITCH disableIsqri="YES" IBIS IPS ChanNum=0 SCW1_BKG_P_method=1 PICSIT inCorVar=0 PICSIT outVarian=0 SCW1 BKG picsSUnifDOL="-" SCW1_BKG_picsMUnifDOL="-" staring=yes tolerance=0.1

Instrument characteristic:

Data analysis

Image deconvolution

Mosaic image Spectra Detector light curve

limitationa

Method

Background maps Energy dependency Noise estimation

Conclusions

Mosaic image, OSA tool ip_skymosaic

```
ip_skymosaic
inOG=""
idXScw=""
outOG="./og_ibis.fits[1]"
outMosaic="./pics_mosa_ima2.fits(PICS-MOSA-IMA-IDX.tpl)"
outPicsitCat="./pics_mosa_res2.fits(PICS-MOSA-RES-IDX.tpl)"
inCat="./isgri_catalog.fits[1]"
detThr=3.0
imgSel="EVT_TYPE=='SINGLE'_&&_E_MIN==252_&&_E_MAX==336"
pro jSel="-TAN"
```

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Instrument characteristic

Data analysis

Image deconvolution

Mosaic image

Detector light curve

Limitations

Method Background maps Energy dependency Noise estimation

Conclusions

Mosaic image, HEASOFT tool varmosaic

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Is scw/*/picsit_ima.fits > name.list varmosaic name.list name.fits

Instrument characteristic:

Data analysis

Image deconvolution

Mosaic image Spectra Detector light curve

Limitations

Method Background maps Energy dependency Noise estimation

Conclusions

Crab, Rev. 0239, ip_skymosaic mocaics 336-448 keV 672-1036 keV

Instrument characteristic:

Data analysis

Image deconvolution Mosaic image

Spectra

Detector light curve

Limitations Method

Background maps Energy dependency Noise estimation

Conclusions

Spectral extraction software is still not ready

Spectra can be made using the fluxes from mosaic images or

from set of individual sky images with the script spextract_pics (http://isdc.unige.ch/index.cgi?Soft+scripts)

(日)

Instrument characteristic:

Data analysis

Image deconvolution Mosaic image Spectra

Detector light curve

Limitations

Method Background maps Energy dependence Noise estimation

Conclusions

Crab, spectra from Revs. 0043, 0170, 0239

Instrument characteristic

Data analysis

Image deconvolution Mosaic image Spectra

Detector light curve

Limitations

Method Background maps Energy dependency Noise estimation

Conclusions

Detector light curve (SPTI data)

ibis_science_analysis ogDOL="./og_ibis.fits[1]" startLevel="LCR" endLevel="LCR" OBS1_ScwType="ANY" CAT_refCat="\$ISDC_REF_CAT" SWITCH_disablePICsIT="NO" SWITCH_disableIsgri="YES"

Resulting scw/*/picsit_lcr.fits files can be analysed with tools like lcurve

(ロ) (同) (三) (三) (三) (三) (○)

Instrument characteristic

Data analysis

Image deconvolution Mosaic image Spectra

Detector light curve

Limitations

Method Background maps Energy dependency Noise estimation

Conclusions

Start Time 13277 10:37:55:899 Stop Time 13277 11:10:55:899

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Instrument characteristic

Data analysis

Image deconvolution Mosaic image Spectra

Detector light curve

Limitations

Method Background ma

Energy dependency Noise estimation

Conclusions

More details on the standard software analysis can be found in: http://www.iasf-bologna.inaf.it/~foschini/OSAP/picsit_data_analysis.html

(日) (日) (日) (日) (日) (日) (日)

Instrument characteristics

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitations

Method

Background maps Energy dependency Noise estimation

Conclusions

LIMITATIONS, count rate extraction method

2 ks shadowgram, 252-336 keV: $\approx 1.2 \times 10^{6}$ background counts ≈ 1000 counts from source (over ≈ 2000 pixels) about 0.5 counts per pixel

standard approximation of Gaussian type data will not work

Instrument characteristic:

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitations

Method

Background maps Energy dependency Noise estimation

Conclusions

Poisson distribution

Poisson probability density distribution, unknown net source counts λ , measured source+background counts N and background counts B

$$p(\lambda) = C \frac{e^{-(\lambda+B)}(\lambda+B)^N}{\Gamma(N+1)}$$
(1)

(ロ) (同) (三) (三) (三) (三) (○)

Poisson distribution is not defined for negative count rates !

Instrument characteristic

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitations

Method

Background maps Energy dependency Noise estimation

Conclusions

Probability density distributions for low number of counts

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 「豆」 のへで

Instrument characteristic:

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitations

Method

Background maps Energy dependency Noise estimation

Conclusions

Sum of two Poisson distributions is also Poisson distributed, with $\lambda = \lambda_1 + \lambda_2$

Difference of two Poisson distributions is not Poisson distributed !

Background and source have to be fitted together

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Instrument characteristic:

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitations

Method

Background maps Energy dependency Noise estimation

Conclusions

PDF method

Joint probability density determined as a product of distributions associated with each datum

$$P(\lambda) = \prod_{i=1}^{n} p_i(\lambda)$$
(2)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

PDFs for source count rate and background map normalization extracted through the marginalization: integration over a nuisance parameter

Instrument characteristics

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitations

Method

Background maps Energy dependency Noise estimation

Conclusions

PDF method, examples of the final result

0239, total (magenta), single ScWs (black)

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Instrument characteristics

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitations

Method

Background maps

Energy dependency Noise estimation

Conclusions

LIMITATIONS, adequate background maps

Difference between shadowgram from Rev. 0079 and shadowgrams from Revs. 0070 - 0090

< 口 > < 同

Instrument characteristics

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitations

Method

Background maps

Energy dependency

Noise estimation

Conclusions

LIMITATIONS, mask model

Mask transparency - PIF is energy dependent

Instrument characteristics

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitations

Background maps Energy dependency Noise estimation

Conclusions

LIMITATIONS, detection reliability

Simple 3 or 5 σ criterion works when the variance corresponds to the entire uncertainty, including all systematic effects

Noise (background fluctuations) level estimation source PIF applied to empty field observations

or

source rate extraction done with randomized PIF for source field (equivalent to fitting a source with null rate)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Instrument characteristics

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

imitations

Method Background maps Energy dependence Noise estimation

Conclusions

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Instrument characteristics

Data analysis

Image deconvolution Mosaic image Spectra Detector light curve

Limitations

- Method
- Background maps Energy dependency Noise estimation

Conclusions

CONCLUSIONS

- The only instrument on orbit in \sim 1 MeV range with a high angular resolution
- Currently PICsIT can be used only for very strong sources
 - Crab
 - Cyg X-1
 - sources in outburst
 - strong, long GRBs
- Standard OSA software has limitations
 - rate extraction method
 - background maps
 - mask model/PIF energy dependence
- Advanced method with better instrument model should make it possible to detect about 20 persistent sources provided enough exposure