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Chapter 1

Introduction

The term ”High-Energy Astrophysics” combines two keywords which determine the scope of the sub-
ject.

The ”High-Energy” physics conventionally deals with the world of high-energy particles, i.e. par-
ticles with energies much higher than the rest energy. For electrons the rest energy is

E = mec
2 ' 5× 105 eV (1.1)

(here me = 0.9 × 10−27 g is the mass of electron and c = 3 × 1010 cm/s is the speed of light), while
for proton it is

E = mpc
2 ' 109 eV (1.2)

with the proton mass mp = 1.6 × 10−24 g. In laboratory conditions here on Earth, the high-energy
particles are produced by accelerator machines, like the Large Hadron Collider (LHC) at CERN, in
which protons reach energies in the range of 10 TeV. The main goal of the High-Energy Physics re-
search is to understand the fundamental constituents of matter (elementary particles) and interactions
between them.

Figure 1.1: The spectrum of cosmic rays measured
by different experiments. This log-log scale plot
shows the differential flux of particles per unit en-
ergy interval, F (E), multiplied by energy E to the
power 2.6. From Ref. [4].

Second part of the name High-Energy Astro-
physics contains the word ”Astrophysics” which
clearly refers to astronomical observations, typi-
cally done using various types of telescopes and
aimed at understanding of the properties and
mechanisms of activity of different types of as-
tronomical sources, like stars and galaxies.

Combining the two parts into one subject de-
fines the subject of High-Energy Astrophysics as
research in the domain of Astronomy, specifically
aimed at understanding of the role of high-energy
particles and their interactions in the activity of
different types of astronomical sources.

The fact that some astronomical objects work
as particle accelerators is established based on
two types of observational data.

First, we directly detect the high-energy
charged particles coming from space in the form
of cosmic rays. Measurements of the spectrum of
cosmic rays (Fig. 1.1) show that the energies of
the cosmic ray particles reach 1020 eV, which is

some seven orders of magnitude higher than the maximal energies of protons attained at the LHC.
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6 CHAPTER 1. INTRODUCTION

These particles are produced by some (still unknown) astronomical sources and it is one of the major
challenges of modern physics and astronomy to identify these sources. The uncertainty of the sources
of cosmic rays constitutes the long-standing problem of the origin of cosmic rays. The cosmic rays
were first discovered in 1912, so the problem is now 100-year-old.

Next, the information on the presence of high-energy particles in astronomical sources is obtained
indirectly, via observations of those sources with telescopes operating at different wavelengths, i.e.
with the tools of the ”multi-wavelength astronomy”. From the early days of the mankind, people have
started to do astronomical observations, by looking at the stars on the sky first with the naked eye,
and then, starting from Copernicus, with telescopes. Up to the middle of 20th century, the word
”astronomical observations” was synonymous to the ”astronomical observations in the visible band”,
because the only type of light sensors used was the human eye, sensitive in the visible range. The
visible energy band contains photons in the wavelength range

400nm ≤ λ ≤ 700 nm (1.3)

This corresponds to a rather narrow range of photon energies ε = 2π~c/λ

1.8 eV < ε < 3.2 eV (1.4)

Only astronomical sources emitting photons in this specific energy range were known all this time.
Starting from the end of 1960’s, the tools of radio, infrared, ultraviolet, X-ray and gamma-ray

astronomy started to develop, so that today, just 50 years after, the energy range available for the
astronomical observations comprises some 12 decades in energy:

10−6 eV < ε < 1013 eV (1.5)

Fig. 1.2 shows the definition of different ”energy windows” of the multi-wavelength astronomy.

Figure 1.2: Timeline of the history of astronomy
and definition of different energy / wavelength
bands. and different astronomical ”messenger”
particles.

The tools of the multi-wavelength astronomy
have opened a possibility of observing the ef-
fects of interactions of high-energy particles in
astronomical sources. Photons with energies up
to 1013 eV are produced by particles with en-
ergies at least E > 1013 eV, i.e. much higher
than the rest energies of proton and electron.
These particles emit photons of different ener-
gies, from radio to γ-rays via a variety of emis-
sion mechanisms: synchrotorn, Compton scatter-
ing, Bremsstrahlung, pion production and decay.
Combinaiton of multi-wavelength data is impor-
tant for getting a complete picture of physical
mechanisms of activity of the sources.

In a similar way, the high-energy sources also
emit different types of particles, ”astronomical
messengers”. Apart from photons, the most com-
mon ”astronomical messenger” particles, infor-

maiton on mechanisms of operation of high-energy sources is also carried by neutrinos, cosmic rays
and gravitational waves. Combinaiton of the ”multi-messenger” data (Fig. 1.2) is equally important
for understanding of the mechanisms of operation of sources.

In the context of the multi-wavelength astronomy, the term ”High-Energy Astrophysics” is some-
times understood in a slightly different sense, than explained above. the term ”High-Energy” might
also refer to ”photons energies higher than those of the visible / UV light”. In this case the ”High-
Energy Astrophysics” research field comprises all possible sources and physical processes which man-
ifest themselves through the X-ray and gamma-ray emission. This includes then not only processes
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related to the presence of relativistic particles in the sources, but also thermal processes in astro-
nomical objects with temperatures in the range above 100 eV (the low-energy boundary of the X-ray
band).

1.1 Types of astronomical HE sources

Large part of astronomical sources emit radiation with thermal spectrum characterised by temperature
T . The energies of particles generating this radiation could be estimated from the well-known relation

〈E〉 ∼ 3

2
kBT (1.6)

where kB = 8.6× 10−5 eV K−1 is the Boltzmann constant serving as a conversion coefficient between
the units of temperature and energy units. Presence of relativistic particles in the thermal astronomical
objects implies the temperature range

T ∼ mec
2

kB
' 0.6× 1010 K (1.7)

for the objects containing relativistic electrons or

T ∼ mpc
2

kB
' 1013 K (1.8)

for the objects with high-energy protons.
The temperature range T ∼ 1010 K might be reached in the interiors of stars or at the final

stage of life of massive stars when they explode as supernovae. The surface temperatures of the stars
are typically much lower, not exceeding 105 K, so that solar-like and massive stars powered by the
nucleosynthesis reactions are not the sources of interest in the High-Energy Astrophysics domain.

Much higher temperatures are sometimes reached in the objects powered by the release of gravi-
tational (rather than nuclear) energy. A typical first estimate of the temperature of a gravitationally
collapsing matter is given by the virial theorem

T ∼ 2

3

〈E〉
kB
∼ 1

3

U

kB
∼ GNMmp

3kBR
(1.9)

where GN = 6.7 × 10−8 cm3/(g s2) is the gravitational constant, M,R are the mass and size of the
collapsing matter configuration and U is the gravitational potential energy. Typical particle energies
become relativistic, 〈E〉 ∼ mpc

2, if the body is compact enough, with the size

R ∼ GNM

c2
. (1.10)

This size estimate is about the gravitational radius of a body with the mass M

Rgrav =
GNM

c2
' 1.5× 105

[
M

M�

]
cm. (1.11)

Objects of the size comparable to the gravitational radius are called ”compact objects”. The known
astronomical compact object classes are neutron stars and black holes, including the supermassive
black holes in the centres of galaxies and stellar mass black holes.

These two classes of objects are powering most of the astronomical sources studied in High-Energy
Astrophysics, including

• Active Galactic Nuclei (AGN):
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– Seyfert galaxies (Sy)

– quasars / blazars (QSO)

– radio galaxies

• X-ray binaries (XRB):

– Low-mass X-ray binaries (LMXRB)

– High-mass X-ray binaries (HMXRB)

– Micorquasars

• end products of the life cycle of massive stars:

– supernova remnants (SNR)

– pulsars and pulsar wind nebulae (PWN)

– gamma-ray bursts (GRB)

Figure 1.3: Spectral energy distribution of the
quasar 3C 273, in two representations. The up-
per plot shore the differential flux, which is energy
flux per unit energy or frequency. This flux is mea-
sured in the units of Jansky, 1 Jy= 10−23 erg/(cm2

s Hz). The lower panel show the energy flux as a
function of energy. From the Ref. [5].

Observations using the tools of multi-
wavelength astronomy show that significant part
of High-Energy Astrophysics sources does not
emit radiation with thermal spectrum. Instead,
they reveal signal which is spread over many
decades of energy. Fig. 1.3 shows an example of
such broad band spectrum in the quasar 3C 273.
The broad range of photon energies is explained
by the broad range of the energies of charged par-
ticles (electrons, protons) which have produced
the photons. In the particular case of 3C 273, one
could see that particle energies should be spread
over several decades in energy.

1.2 Types of physical processes
involved

High-energy particles with broad energy distri-
bution usually loose their energy via various ra-
diative energy loss channels, before being able to
”thermalise” (i.e. to establish thermal distribu-
tion in momenta). The main radiative (ie. ”ac-
companied by photon production”) energy loss
channels for electrons are

• synchrotron / curvature radiation,

• inverse Compton emission,

• Bremsstrahlung

A non-radiative energy loss especially important
for mildly relativistic and non-relativistic electrons is

• Coulomb (ionisation) energy loss
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Figure 1.4: Left: the principle of grazing incidence optics used in X-ray telescopes. Right: the set of
nested mirrors of the X-ray telescope XMM-Newton.

All these radiative and non-radiative channels contribute to larger or smaller extent to the formation
of spectra of high-energy particles in the sources and to the formation of the broad-band emission
spectra of the type shown in Fig. 1.3 for the quasar 3C 273.

In the case of high-energy protons the main radiative energy loss channel is

• production and decay of neutral and charged pions in interactions with matter and radiation
fields.

The non-radiative Coulomb losses are also important for the lower energy mildly relativistic protons.

1.3 Observational tools

A complete understanding of the physics of sources with photon emission spectra extending from radio
to gamma-rays (like 3C 273, shown in Fig. 1.3), is possible only with the detailed information on the
imaging, spectral and timing information in all energy bands. This means that the observational tools
of High-Energy Astrophysics include telescopes across all energy bands, including radio, infrared,
visible, UV, X-ray and gamma-ray bands.

However, the term ”experimental / observational High-Energy Astronomy” is usually reserved for
telescopes and observational techniques in the X-ray and gamma-ray bands, with the visible / infrared
astronomy and radio astronomies considered to be separate disciplines on their own.

X-rays and gamma-rays do not reach the ground. Observations in the X-ray and gamma-ray
bands are, therefore, possible only with telescopes placed outside the Earth atmosphere in space. This
explains why the age of High-Energy Astronomy has started only at the end of 1960th with the invent
of the space flight.

Another peculiarity of the telescopes used in High-Energy Astronomy stems from the fact that,
contrary to radio-infrared-visible radiation, X-ray and gamma-ray photons tend to interact with the
telescope material in a destructive way, so that it is difficult to focus the signal with the conventional
lenses / mirrors without destroying the photons. This is explained by the fact that the energy of each
photon is comparable of higher than the ionisation energy of atoms composing the lens / mirror. As
a result, the collisions of photons with atoms are inelastic and destructive.

This problem is partially overcome in the X-ray telescopes, where a special type of optical setup
enables focusing of X-ray photons with energies up to 10 keV. The principle of the setup, known under
the name of ”grazing incidence optics”, is shown in Fig. 1.4. To avoid the destructive interaction of
X-rays with the lens / mirror material, the X-ray photons are falling on the mirror surfaces at large
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incidence angles (”grazing” angles). A single grazing incidence focusing mirror (which could be e.g.
segments of parabola) would have very small collection area, because it would intercept only a small
faction of the X-ray photons. Stacks of nested mirror segments are used to achieve significant collection
areas (in the range of ∼ 100−1000 cm2) with the grazing incidence technique. The right panel of Fig.
1.4 shows an example of the mirror of the X-ray telescope XMM-Newton, which is a European Space
Agency (ESA) mission now in orbit.

Figure 1.5: The principle
of the coded mask optics
and the coded mask of
IBIS telescope on board
of INTEGRAL.

Focusing photons of higher and higher energies would require the nested
mirror systems with smaller and smaller grazing incidence angles. This,
in turn, would imply larger and larger focal lengths. Thus, the grazing
incidence technique stops to work at high energies (nowadays about 50 keV,
achieved with the NASA X-ray telescope Nu-STAR). At higher energies
astronomical observations are done without the use of focusing.

One example of non-focusing optics is the ”coded mask” technique,
which is a direct development of the method of pinhole camera. This
technique is illustrated in Fig. 1.5. Signal from an astronomical source
passing through the mask (a plane with a set of holes) casts a particular
shadow pattern on the detector plane. Registering this shadow pattern
one could determine the source position on the sky via a straightforward
ray tracing. Shadow patterns cast by different sources in the field of view
overlap, but they are recognisable one-by-one, so that the ray tracing could
be done for each source separately. This technique is used in a number of
telescope currently operating in the hard X-ray / soft gamma-ray band,
including the ESA INTergnational Gamma Ray Laboratory (INTEGRAL).
The coded mask of the IBIS imager on board of INTEGRAL is shown in
Fig. 1.5.

At the energies higher than ∼ 1 MeV even the coded mask imaging
would not work, because it would require a prohibitively heavy and thick
mask which would be able to block gamma-rays. In this energy band tele-
scopes do not use any imaging equipment at all. Instead, each gamma-ray
is individually detected and it energy and arrival direction is determined.
The observational data consist of the lists of gamma-rays detected from
a given region of the sky in a given time span. Positions of sources of
gamma-rays on the sky are identified by the clustering of large number
of gamma-rays coming from particular directions. This principle of ob-
servations is used e.g. by the Fermi gamma-ray telescope operating in
the 0.1-100 GeV energy band. Its setup is shown in Fig. 1.6. High-energy

gamma-rays entering the telescope are converted into electron-positron pairs in one of the layers of the
Tracker (the upper multi-layer part of the detector in Fig. 1.6). Trajectories of electron and positron
are ”tracked” by the Tracker and then energies of both particles are measured by the Calorimeter,
which is the lower thicker layer of the detector shown in Fig. 1.6.

At the energies higher than ∼ 100 GeV, the space-based detectors are unable to perform sensible
astronomical observations, because of their limited collection area. In this energy band, each photon
carries macroscopic energy (100 GeV=0.16 erg). The power of astronomical sources is carried by a
small number of highly energetic photons and the overall number of photons rapidly decreases with
the increase of the energy of each photon. Typical luminosities of astronomical sources are such that
in the energy band above 100 GeV only about one or less photons per year could be detected by an
instrument with collection area about 1 m2.

Astronomical observations in the Very-High-Energy (VHE) band (photon energies above 100 GeV)
are possible only with setups with extremely large collection areas (in the range of 104 − 106 m2).
Such collection areas are provided by the ground-based Cherenkov telescope arrays, see Fig. 1.7.
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The principle of detection of VHE gamma-rays is based on the fact that these gamma-rays produce
electromagnetic cascades when they penetrate in the atmosphere. High-energy particles in the cascade
move with the speed faster than the speed of light in the air and produce Cherenkov radiation in the
UV wavelength range. Large optical reflectors are used to sample this Cherenkov light which appears
for short periods of time (about ten nanoseconds) as bright ”traces” of the gamma-ray induced cascade
in the UV light. The information on the arrival direction and energy of the initial VHE gamma-ray
is obtained via stereoscopic imaging of the cascade in the atmosphere (see Fig. 1.7, left panel). Right
panel of Fig. 1.7 shows a 17 meter dish of the MAGIC telescope as an example of the large reflectors
used by the Cherenkov telescopes.

1.4 Natural System of Units

Figure 1.6: Fermi LAT telescope. The upper
part of the telescope made of many layers is the
Tracker. The lower thick layer part is Electromag-
netic Calorimeter.

High-Energy Astrophysics subject relates parti-
cle physics and astronomy. These two branches
of science use different unit conventions and it
is sometimes challenging to convert the ”lan-
guage” of particle physicists into the ”language”
of astronomers and vice versa. A convenient ap-
proach is to reduce both astronomical and parti-
cle physics quantities and formulae to put them
into a common unit system. Thoughout this
course the common system of units will be the
Natural System of Units, with the Gaussian ver-
sion for electromagnetic quantities (as opposed
to Heaviside-Lorentz, with quantities typically
differing by 4π factors between Gaussian and
Heaviside-Lorentz systems, see discussion in Ref.
[6]).

The idea of the Natural system of units is to
reduce the number of fundamental constants to
the necessary minimum. This implies typically

getting rid of the constants serving for unit conversions. For example, the Boltzman constant kB
serves for conversion between the units of temperature (which is, in essence a measure of energy) and
energy:

kB = 8.6× 10−5 eV K−1 = 1 (1.12)

This means that in the Natural system of units the temperature is always measured in electronvolts,
instead of Kelvins. Whenever a measurement is provided in Kelvins, one immediately converts it into
electronvolts using the relation

1 K = 8.6× 10−5 eV (1.13)

The same is done with the electric and magnetic permeabilities of vacuum, encountered in the
International System of Units:

4πε0 = 4πµ0 = 1 (1.14)

which serve for the introduction of the charge units (Coulomb) in this system.
In a similar way, one could see that the speed of light is, in a sense, a constant for conversion of

the units of time and distance: one could measure distance in time units, with the unity the distance
travelled by photons in one second, or, vice versa, once could measure time in the distance units, with
the unity being time in which photon crosses the distance of 1 cm. Thus, imposing

c = 3× 1010 cm/s = 1 (1.15)
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Figure 1.7: Left: the principle of operation of Cherenkov telescopes. RIght: one of the two Cherenkov
telescopes of MAGIC stereo pair.

one obtains a conversion between different time-distance units:

1 s = 3× 1010 cm (1.16)

The speed of light serves also for conversion of the units of mass into the units of energy via the
relation E = mc2. Thus, any measurement of the mass in grams could be converted into ergs or
electronvolts.

The Planck constant relates the energy and frequency of the photon: E = ~ω. Setting

~ = 6.6× 10−16 eV s = 1 (1.17)

one obtains a way of measurement of energy in the units of frequency (or inverse time) and vice versa:

1 eV = 1.5× 1015 s−1 (1.18)

(notice that the frequency of photons given in the astronomical measurements is usually ν = ω/(2π),
so that the conversion between Hz (frequency of radiation) and eV (energy of photons) differs from
the above relation by a 2π factor.

Combining the conversion of centimetres into seconds and seconds into elevtronvolts one finds a
relation

~c = 2× 10−5 eV cm = 1, → 1 eV = 5× 104 cm−1 (1.19)

In the Natural System of units the electric charge is dimensionless. This is clear from the expression
for the fine structure constant:

α =
1

137
=

e2

4πε0~c
= e2 (1.20)

The numerical value of the electron charge is

e =
√
α ' 0.085 (1.21)

Magnetic field is measured in the units of [energy]2, as it is clear from the expression for the energy
density of magnetic field

U =
µ0B

2

2
=
B2

8π
(1.22)
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The energy density is the quantity measured in e.g. [eV/cm3]. Since cm−1 is also an energy unit,
the units of U are also [eV4]. To match the dimensions in the right and left hand side of the above
equation, B should be measured in the units of [eV2]. The conversion between Gauss (the units of
magnetic field in the CGS system) and eV2 could be found from the relation

UB =
[B/1 G]2

8π

erg

cm3
(1.23)

Taking into account the conversion between the energy units ergs and eV

1 eV = 1.6× 10−12 erg (1.24)

one finds
1 G ' 0.07 eV2 (1.25)

The conversion between Tesla (magnetic field units in the International System) and Gauss is

1 T = 104 G (1.26)

Combining the last and before-last equations one gets a conversion between Tesla and eV2.
Other useful conversion coefficients which are needed to bring the astronomical and particle physics

data to the common system of units are

• energy/power

1 J = 107 erg = 6.25× 1018 eV

1 Jy = 10−23 erg/(cm2 s Hz) (1.27)

• distance

1 pc = 3× 1018 cm

1 AU = 1.5× 1013 cm

1 Å = 10−8 cm (1.28)

• mass / energy

1M� = 2× 1033 g ' 1.8× 1054 erg ' 1066 eV

me = 0.9× 10−27 g = 5× 105 eV

mp = 1.7× 10−24 g = 0.94× 109 eV (1.29)

• cross section

1 barn = 10−24 cm2 (1.30)

This set of conversion formulae will be systematically used in numerous numerical estimates encoun-
tered in the following chapters.

The dimensionality of magnetic field suggests an important scale of the magnetic field strength,
which is

B =
m2
e

e
' 4× 1013 G (1.31)

This is the field when the giroradius of electrons moving in the magnetic field becomes comparable to
their Compton (or de Broglie in the non-relativistic case) wavelength. If magnetic field is higher than
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this fundamental level, motions of electrons in magnetic field could not be considered as a classical
mechanics problem.

One important note concerns the gravitational force and Newton constant. From the expression
of the Newton’s law

ma =
GNMm

r2
(1.32)

it is clear that the dimensionality of the Newton constant is [mass]−2 or, equivalently, [length]2. This
means that it is not possible to set this constant to one in the Natural System of units. Instead, the
numerical value of the Newton constant is

GN = 6.7× 10−8 cm3

g s2
=

1

(1019 GeV)2
=

1

M2
Pl

(1.33)

The energy (or mass) scale entering the Newoton’s constant is called the Planck scale, it is the scale
at which the Compton wavelength of a particle becomes comparable to its gravitational radius.



Chapter 2

Radiative Processes

2.1 Radiation from a moving charge

Most of the formulae in this chapter for the radiative processes involving electrons (synchrotron and
curvature radiation, Compton scattering and Bremmstrahlung emission) are different applications of
the basic formulae for the dipole radiation of an accelerated charge. Taking this into account, this
section reminds the derivation of the accelerated charge radiation.

Electromagnetic field is a solution of Maxwell equations [7]

∂Fµν

∂xν
= −4πjµ. (2.1)

where xµ = (t, ~x) are the four-coordinates and jµ is the four-current. Expressing the electromagnetic
field tensor through the 4-potential Fµν = ∂µAν − ∂νAµ, we rewrite the Maxwell equations for the
potential in the Lorentz gauge ∂Aµ/∂xµ = 0 in the form of inhomogeneous wave equation

∂2Aµ

∂xν∂xν
= 4πjµ (2.2)

We are interested in the particular case of a point charge e moving along a trajectory ~r = ~r0(t). Such
a charge creates the 4-current jµ = e(δ(~r − ~r0(t)), ~vδ(~r − ~r0(t))) where ~v = d~r0/dt is the velocity.
Solution of the wave equation in a point ~r at the moment of time t is determined by the state of
motion of the charge at the moment of time t′ implicitly found from the relation

t′ +
∣∣~r − ~r0(t′)

∣∣ = t (2.3)

The solution of the system of wave equations for the potential is known to be the Lienard-Wichert
potential Aµ = (φ, ~A)

φ(r, t) =
e

(R− ~v · ~R)

∣∣∣∣∣
t′

, ~A(r, t) =
e~v

(R− ~v · ~R)

∣∣∣∣∣
t′

, (2.4)

where ~R = ~r − ~r0. Electric and magnetic fields corresponding to this potential could be calculated
from relations ~E = ∂ ~A/∂t− ∂φ/∂~x, ~B = (∂/∂~x)× ~A. This gives an expression

~E =
e(1− v2)

(R− ~v · ~R)3
(~R−R~v) +

e

(R− ~v · ~R)3

[
~R×

[
(~R−R~v)× d~v

dt

]]
~B =

1

R

[
~R× ~E

]
(2.5)

15
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If the velocity of the charge does not change in time, dv/dt = 0, the second term is absent and the
first term just gives the Coulomb field of the charge, falling as R−2 at large distances. Using the rules
of Lorentz transformation of electromagnetic tensor, one finds that in this case the magnetic field is
absent in the reference system comoving with the charge.

Accelerated motion of the charge dv/dt 6= 0 leads to the appearance of an additional term which
falls as 1/R at large distances. Both electric and magnetic field due to this term are orthogonal to the
direction toward the charge. This is the field of electromagnetic wave generated by the accelerated
motion. A qualitative understanding of the appearance of electromagnetic wave could be obtained via
a simple geometrical calculation, see e.g. [2, 1].

At large distances from the source, r � r0, one could approximate R ' r. In this case the second
term in the expression from the electric field of slowly moving charge could be rewritten in the form

~E ' 1

r

[[
~̈d× ~n

]
× ~n

]
(2.6)

where the dipole moment ~d = e~r0 and the unit vector ~n = (~r)/r are introduced. The magnetic field
in these notations is

B ' 1

r

[
~̈d× ~n

]
(2.7)

Both electric and magnetic fields are orthogonal to the direction from the charge to the observation
point ~n and they are also orthogonal to each other. Such configuration is typical for the electromagnetic
wave propagating in the direction ~n. The energy flux carried by the wave is given by the Poynting
vector

~S =

[
~E × ~B

]
4π

=
B2

4π
~n (2.8)

Substituting the expression for B one finds the flux dI in the solid angle dΩ in the direction n at an

angle θ with respect to the direction of ~̈d

dI

dΩ
= (~S · ~n) =

d̈2

4π
sin2 θ (2.9)

One could see that the intensity of emission is directed in a broad angular range preferentially in the

direction orthogonal to the acceleration ~̈d.

Integration of the above expression over 0 < θ < π gives (dΩ = 2π sin θdθ)

I =
2d̈2

3
. (2.10)

This is the Larmor formula for the intensity of dipole radiation by an accelerated charge.

This total power is emitted in the form of photons of different energies. To know the energy
distribution, or spectrum, of the radiation we decompose the overall power onto power at a given
frequency ω by doing the Fouriver transform. For this we use the formula of Fourier analysis stating
that

∫∞
−∞ |f(t)|2dt = 4π

∫∞
−∞ |f(ω)|2dω. This means that in the non-relativistic motion case

∫ ∞
−∞

dI

dΩ
dt =

∫ ∞
−∞

|d̈|2

4π
sin2 θdt =

∫ ∞
−∞

ω4|d̂(ω)|2 sin2 θdω =

∫ ∞
−∞

dÎ(ω)

dΩ
dω (2.11)

and the spectral energy density of radiation at the frequency ω is

dÎ(ω)

dΩ
= ω4|d̂(ω)|2 sin2 θ (2.12)
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Here the hat denotes the Fourier transform of the function, e.g.

d(t) =

∫ ∞
−∞

e−iωtd̂(ω)dω (2.13)

For a relativistic charge, one introduces the 4-velocity uµ = dxµ/dτ where τ is the proper time along
the particle trajectory, and the 4-acceleration aµ = duµ/dτ = (dγ/dτ, d(γ~v)/dτ), with γ = 1/

√
1− v2

being the particle gamma factor. The Larmor formula rewritten in the 4-vector notations reads

I =
2e2

3
aµa

µ =
2

3
e2

((
dγ

dτ

)2

−
(
d(γ~v)

dτ

)2
)

(2.14)

Expressing the derivative of γ through the derivative of v and substituting dt/dτ = γ one could rewrite
the last formula in the form

I =
2

3
e2γ6

(
−(~v · ~̇v)2 − 1

γ2
(~̇v)2

)
(2.15)

where dot denotes the coordinate time derivative d/dt. The quantity (~v · ~̇v) = va|| is the component of
particle acceleration parallel to the velocity. One could introduce also the normal component of the
acceleration via relation ~̇v2 = a2

|| + a2
⊥, so that the Larmor formula becomes

I =
2

3
e2γ6

(
−a2
|| −

1

γ2
a2
⊥

)
(2.16)

2.2 Curvature radiation

Let us consider a relativistic particle with gamma factor γ moving along a circle of the radius R with
the speed v. The angular frequency of such motion is ω0 = v/R. The only component of acceleration
different from zero is a⊥ = ω0v. The Larmor formula (2.16) gives the total power of emission

I =
2

3
e2γ4ω0v

2 =
2

3

e2γ4v4

R2
(2.17)

Note that for an ultra-relativistic particle it is always the normal component of acceleration which
provides the main contribution to the dipole radiation intensity. This is because v ' 1 − ε, where
ε ' 1/(2γ2) � 1. The rate of change of the of the absolute value of v is always small. Indeed, if the
characteristic time scale of the change of particle gamma factor is ω−1

0 , one could estimate the value
of the parallel component of acceleration as a|| ∼ γ̇/(γ3) ∼ ω0/γ

2. Substituting this expression into
Eq. (2.16), one finds that the emission power is I ∼ e2γ2ω2

0, which scales just as a second, rather than
forth, power of γ.

Figure 2.1: Angular pattern of dipole emission from
non relativistic (left) and relativistic (right) parti-
cles.

The spectrum of emission from a non-
relativistic particle in a circular orbit could be
found in a straightforward way. The velocity and
acceleration are varying periodically with the pe-
riod T = 2π/ω0, so that the only non-zero com-
ponent of the Fourier transform of d(t) is d̂(ω0).
This means that the emission spectrum (for the
non-relativistic motion case) is sharply peaked at
the frequency ω0.

The second time derivative of the dipole mo-
ment is a vector rotating in the plane of the circular motion of the particle. The angular distribution
of the emitted dipole radiation is given by Eq. (2.9) and is shown in the left panel of Fig. 2.1.
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In the relativistic case, the angular distribution pattern changes due to the Doppler boosting. To
find the characteristic boosting pattern, consider a particle moving along axis x with the speed v close
to the speed of light, v ∼ 1. In the reference system comoving with the particle, particle motion is
non-relativistic and emission (e.g. dipole radiation described above) is in a broad range of angles. The
transformation to the comoving reference frame has the form

x′ = γ(x− vt); y′ = y, z′ = z, t′ = γ(t− vx). (2.18)

Transformation of velocities between the laboratory and comoving frame is

ux =
u′x + v

1− vu′x
, uy =

u′y
γ(1 + vu′x)

, uz =
u′z

γ(1 + vu′x)
. (2.19)

Consider a photon which is emitted in the direction normal to the particle motion along y axis in the
comoving frame, u′x = u′z = 0. In the laboratory frame the components of photon velocity are

ux = v, uy =
u′y
γ
, uz = 0 (2.20)

The angle between the direction of motion of photon and particle velocity in the laboratory frame is,
therefore,

α =
uy
ux

=
1

vγ
' 1

γ
(2.21)

Figure 2.2: Geometry of emis-
sion by relativistic particle in
circular motion.

A similar estimate, α ∼ γ−1 could be found for the broad range
of photon directions in the comoving frame, which are not almost
aligned with the direction of particle velocity. Thus, the effect of the
Doppler boosting on any broad angle radiation pattern is to compress
this pattern into a narrow range of directions α . γ−1 around the
direction of particle velocity v.

Relativistic beaming also dramatically changes the spectrum of
radiation. Consider an observer situated in the plane of circular mo-
tion at large distance from the particle. (S)he detects the radiation in
the form of short pulses, each time when the beam with an opening
angle α ' γ−1 directed along particle velocity passes through the line
of sight. The duration of the pulse could be readily calculated from
geometry shown in Fig. 2.2. The radiation is visible from a fraction

of the circle of particle trajectory spanning an angle 2α. The length of the arc of the angular size 2α
is L = 2αR and the time interval during which particle emits in the direction of observer is therefore
∆t = 2αR/v. Suppose that the particle passes the point A at the moment t0. The photon emitted
at this point arrives at the location of observer after a time delay δtA = d/c, where d is the distance
to the observer. The last photon in the direction of the observer is emitted at the point B, at the
moment tA = t0 + ∆t. It arrives at the location of the observer at the moment tB = t0 + ∆t + δtB,
where δtB = (d− L)/c. The overall duration of the pulse seen by the observer is

∆tobs = tB − tA = ∆t+ δtB − δtA = ∆t (1− v) =
2R

γv
(1− v) =

2R

γ3v(1 + v)
' R

γ3
(2.22)

where we have substituted v ' 1 in the last equality. The Fourier transform of the time sequence of
pulses detected by the observer has all harmonics up to the frequency

ωcurv ∼
1

∆tobs
∼ γ3

R
(2.23)
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It is useful to have a numeric reference value for this frequency for the future estimates:

εcurv = ~ωcurv =
~cγ3

R
' 2× 104

[ γ
105

]3
[

R

106 cm

]−1

eV (2.24)

One could understand the above formula in the following way. Relativistic electrons with energies
Ee = γme ' 100 GeV confined within a region of the size R ∼ 10 km, they inevitably emit curvature
radiation in the hard X-ray band, at the energies about εcurv ∼ 20 keV. As an ”everyday life” example
of such situation one could mention the past times when the LHC accelerator machine in CERN
was still electron-positron collider LEP (Large Electron Positron). It was operating at the energies
E ∼ 100 GeV accelerated in the LHC tunnel of the radius R ∼ 10 km. From Eq. (2.24) one could
find that the electron beam was a source of hard X-rays.

Situation when high-energy particles are confined within an astronomical source of finite size is
typical. Thus, generically, all astronomical sources hosting high-energy particle accelerators should
be visible in telescopes, because the charged high-energy particles confined within the source emit (at
least!) curvature radiation photons.

Particles emitting curvature radiation loose energy at the rate

dEe
dt

= −I ' 2

3

e2γ4

R2
' 4× 1011

[ γ
105

]4
[

R

106 cm

]−2 eV

s
(2.25)

(see Eq. (2.17)). Once injected in such a compact region of space, TeV electrons loose all their
energy within the time interval shorter than one second. Coming back to the LEP example, one could
conclude from Eq. (2.25) that supporting the beam of accelerated electrons in the LEP accelerator
machine required continuous ”re-acceleration” of the beam. All the beam energy was continuously
dissipated into the hard X-rays.

2.2.1 Astrophysical examples (pulsar and black hole magnetospheres)

Figure 2.3: Spectrum of pulsed γ-ray
emission from Vela pulsar (the bright-
est GeV γ-ray point source on the sky).
From Ref. [8].

The reference example illustrating curvature radiation in
astrophysical environments is the currently most often con-
sidered model of γ-ray emission from magnetospheres of
pulsars.

Pulsars are strongly magnetised and fast spinning neu-
tron stars, i.e. compact stars of the size RNS ∼ 106 cm,
rotating at frequencies 1− 103 Hz and possessing magnetic
fields in the range of B ∼ 1012 G. Most of the isolated
point sources of GeV γ-rays in the Galactic Plane are pul-
sars. Spectrum of emission from the brightest pulsar on the
sky, the Vela pulsar, is shown in Fig. 2.3.

The bright GeV γ-ray emission from the pulsars is
pulsed at the period of rotation of the neutron stars
(1− 103 Hz). This implies that the γ-ray photons are pro-
duced close to the neutron star, in a region reasonably close
to the surface of the neutron star. We adopt a first esti-
mate R ∼ RNS ∼ 106 cm and leave further details for the
dedicated section on pulsars. This emission is detected at
the energies exceeding 1 GeV. It is inevitably produced by
relativistic particles.

As it is mentioned above, relativistic particles confined to a compact spatial region inevitably
loose energy at least onto curvature radiation (there might be competing energy loss channels, we will
consider them later on). Using Eq. (2.24) one could estimate the energies of electrons responsible



20 CHAPTER 2. RADIATIVE PROCESSES

for the observed γ-ray emission, under the assumption that the γ-rays are produced via curvature
mechanism

Ee ' 2× 1012
[ εcurv

1 GeV

]1/3
[
R

RNS

]1/3

eV (2.26)

Assumption that emission observed in pulsars comes from the curvature radiation process provides,
in a sense an upper bound on the energies of particles contained in the sources. Indeed, we will see
later on in the course that most of the radiation processes encountered in High-Energy Astrophysics
are different variations of one and the same process of dipole radiation. Each time when trajectories of
relativistic particles are deflected by some force, they start to radiate. The slowest possible deflection
rate and, respectively, the largest possible extent of particle trajectory is when particle is deviated
only when it crosses the entire astronomical source where it is confined. The slowest possible deflection
rate leads to the ”minimal” energy loss rate and to the emission of lowest energy photons. This is the
case of curvature radiation with R RNS in pulsars. From these arguments one could conclude that
typical energies of electrons confined around pulsars are

Ee, pulsars . 1012 eV (2.27)

This conclusion just stems from an observational fact that most of the pulsars have high-energy cut-
offs in the spectra in the GeV energy band. It does not depend on the details of the model of particle
acceleration and interactions which lead to the observed γ-ray emission.

Figure 2.4: Spectrum of γ-ray emission
from vicinity of supermassive black hole
in M87 galaxy, from Ref. [9].

A similar argument is applicable to any astronomical
source. As another example, we can take an Active Galac-
tic Nucleus (AGN) powered by a supermassive black hole
of the mass M and, respectively, of the size Rg & GNM '
1014

[
M/109M�

]
cm. In such sources, γ-rays with energies

up to 10 TeV are detected (see Fig. 2.4 for an example of a
nearby AGN M87). Assuming (without much justification
based on model building) that the 10 TeV photons are pro-
duced via curvature radiation mechanism, εcurv ∼ 10 TeV,
we could use a re-scaled equation 2.26 to find an upper
bound on the typical energy of electrons confined close to
the black hole:

Ee, AGN . 2× 1016
[ εcurv

10 TeV

]1/3
[

R

1014 cm

]1/3

eV (2.28)

Note that the energy loss via curvature radiation oc-
curs for any charged relativistic particle confined in a fi-
nite region. For example, protons with the same gamma
factor as electrrons and, respectively, the energy which is
mp/me = 2×103 times higher than electrons, produce the same curvature radiation. Thus, along with
a conclusion that the AGN central engine, the supermassive black hole, does not contain electrons
with energies in excess of 2 × 1016 eV, we could also conclude that it does not contain protons with
energies much in excess of

Ep, AGN . 4× 1019
[ εcurv

10 TeV

]1/3
[

R

1014 cm

]1/3

eV (2.29)

Curvature radiation also provides the ”minimal possible” energy loss for high-energy particles
confined in an astronomical source (e.g. a pulsar or a supermassive black hole in the AGN). In the
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absence of competing more fast energy losses, a high-energy particle living in the source would loose
most of its energy onto electromagnetic emission on a time scale

tcurv =
Ee

dEe/dt
=

3m4
eR

2

2e2E3
e

' 2× 10−5

[
Ee

1 TeV

]−3 [ R

106 cm

]2

s

' 0.2

[
Ee

1016 eV

]−3 [ R

1014 cm

]2

s (2.30)

which could be estimated from the rate of energy loss by electrons (2.25). In both the pulsar and AGN
example, this time scale is, in fact, comparable or shorter than the time in which particles moving
with the speed of light cross the region of the size about the size of the source,

tlc =
R

c
' 3× 10−5

[
R

106 cm

]
s ' 3× 103

[
R

1014 cm

]
s (2.31)

Thus, in both examples, high-energy particles have to be continuously ”regenerated” inside the source
on a very short time scale, by an efficient acceleration process.

2.3 Evolution of particle distribution with account of radiative en-
ergy loss

A competition between acceleration, energy loss and escape processes leads to formation of broad
energy distribution of high-energy particles inside astronomical sources

dNe

dE
= fe(E). (2.32)

The index e is introduced to distinguish the distribution of charged high-energy particles, e.g. electrons,
from the distribution of photons emitted by these particles, which we will denote as dNγ/dE.

The acceleration process injects particles of energy E with a rate Qe(E). Then particles are cooling
due to radiative and non-radiative losses, with a rate Ė, which is also a function of energy. As a result,
their energy decreases and fe(E) at the injection energy decreases, while fe(E −

∫
Ėdt) increases.

Particles do not disappear once injected, so that the function fe(E) should satisfy a continuity equation
in the energy space

∂fe
∂t

+
∂

∂E

(
Ėfe(E)

)
= Qe(E, t) (2.33)

The sense of this equation is that the increase / decrease of fe in a unit time in a given energy bin
of the width ∆E at reference energy E is given by the rate of injection Qe∆E, by the rate influx of

particles from the adjacent higher energy bin, −Ėf(E)
∣∣∣
E+∆E

and the rate of outflow into the adjacent

lower energy bin −Ėf(E)
∣∣∣
E

(Ė < 0 is ”velocity” along the energy axis, compare with the continuity

equation of the fluid dynamics: ∂f/∂t+ ~∇(f~v) = Q ).
In the above equation, Q is a source of particles, but could also be the ”leakage” of particles (then

it is negative). The leakage, or escape of particles is often characterised by typical escape time τesc,
which could be a function of energy. Then, the source / leakage term, from dimensional reasons, has
the form

Qe,esc =
fe

τesc(E)
(2.34)

so that the Eq. (2.33)
∂fe
∂t

+
∂

∂E

(
Ėfe(E)

)
= Qe(E, t)−

fe
τesc

(2.35)



22 CHAPTER 2. RADIATIVE PROCESSES

Figure 2.5: The effect of cooling on particle spectrum for different energy dependance of the cooling
rate.

In the steady state situation, ∂f/∂t = 0, in the absence of escape τesc → ∞, the solution of the
above equation has the form

fe(E) =
1

Ė

∫ ∞
E

dE′ Qe(E
′) (2.36)

As an example, let us calculate the energy distribution of particles reached in the situation where
the injection is a delta-function in energy Q(E) ∼ δ(E − E0). In this case the above solution of the
equation takes the form

fe(E) =

{
1/Ė, E < E0

0, E > E0
(2.37)

If the cooling is provided by the curvature radiation, then Ė ∼ E4 and

fe(E) =

{
AE−4, E < E0

0, E > E0
(2.38)

where A is a normalisation factor. One could see that cooling leads to a ”pile up” of particles at lower
energies: the number of particles per unit energy interval (or per decade in energy) increases with the
decrease of their energy.

Another useful example is when both the injection and the cooling are powerlaw type functions:
Qe(E) ∼ E−Γinj , Ė ∼ Eγcool (γcool = 4 in the case of curvature radiation). Taking the integral in Eq.
(2.36) we find

fe(E) = AE1−Γinj−γcool (2.39)

The resulting spectrum is also a powerlaw in this case. Thus, if γcool > 1, cooling of particles due to
an energy loss leads to a ”pile up” of particles at low energies. In the case when γcool = 1 (we will
see later on that this is the case e.g. for the Bremsstrahlung cooling mechanism), cooling does not
change the initial injection spectrum. If γcool < 1 (this is the case for e.g. the non-radiative ionisation
loss), cooling makes the particle spectrum harder, because the low energy particles are ”washed out”
by the faster cooling, than the higher-energy particles. Different effects of ”cooling” on the particle
spectrum are illustrated in Fig. 2.5.

2.4 Spectrum of emission from a broad-band distribution of parti-
cles

One could see from the previous subsection that typically high-energy particles are distributed over a
wide energy range (e.g. form a powerlaw type spectra), rather than concentrate around a particular
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energy. Broad distribution of energies of emitting particles leads to a broad distribution of energies of
emitted photons.

In general, the spectrum of emission from a distribution of electrons (protons) dNe/dE = fe(Ee) ∼
E−Γe
e could be calculated once the spectrum of emission from mono energetic electrons Φ(Ee, Eγ) is

known. The intensity Φ of emission at the energy Eγ depends on the electron energy Ee. The emission
from the distribution of electrons is given by the integral

φ(Eγ) =

∫
dNe

dEe
Φ(Ee, Eγ)dEe (2.40)

Let us calculate the spectrum of curvature emission from a powerlaw distribution of electrons
dNe/dE = fe(Ee) ∼ E−Γe

e in the particular case of curvature radiation. Electrons of the energy Ee
emit curvature photons of the energy given by Eq. (2.24), Eγ,∗ ∼ E3

e . In the first approximation
one could adopt a ”delta-function approximation” for the spectrum of emitted photons, Φ(Ee, Eγ) ∼
δ(Eγ − Eγ,∗). The normalisation of the emission spectrum is proportional to the rate of emission of
photons , given by Eq. (2.25), the emission power, divided by the photon energy Eγ = E3

e/(m
3
eR).

Φ(Ee, Eγ) =
Ee
meR

δ

(
Eγ −

E3
e

m3
eR

)
(2.41)

Substituting this expression into (2.40) and taking the integral, we find

φ(Eγ) ∼
∫
E−Γe
e

Ee
meR

δ

(
Eγ −

E3
e

m3
eR

)
dEe

∼
∫
E1−Γe
e

meR

m3
eR

3E2
e

δ

(
Eγ −

E3
e

m3
eR

)
d

(
E3
e

m3
eR

)
∼ E−Γe−1

e ∼ E
−Γe−1

3
γ (2.42)

Thus, the spectrum of emission from a power law distribution of emitting particles is also a power
law.

We can generalise the above formula for an arbitrary dependence of the power of emission on the
electron energy, P (Ee) ∼ Eγcoole (γcool = 4 in the case of curvature radiation) and an arbitrary relation
between photon and electron energy, Eγ,∗ ∼ Eσe , (σ = 3 in the case of curvature emission). This gives

φ(Eγ) ∼ E
γcool+1−Γe−2σ

σ
γ (2.43)

We will reuse this formula to calculate the spectra of synchrotron, Compton and Bremsstrahlung
emission in the following paragraphs.

In a particular case when the shape of the particle spectrum is affected by the effects of cooling
(see Eq. 2.39),

Γe = Γinj + γcool − 1 (2.44)

the emission spectrum is independent on the energy scaling of the cooling rate γcool:

φ(Eγ) ∼ E
2−2σ−Γinj

σ
γ (2.45)

Examples of powerlaw (or cut-off powerlaw) spectra of emission from a distribution of high-energy
particles could be found in Figs. 2.3, 2.4. Publicaitons in X-ray and γ-ray astronomy often give
representation of the spectrum in the form

dNγ

dE
(Eγ) ∼ φ(Eγ), ”differential spectrum” or

Eγ
dNγ

dE
(Eγ) ∼ Eγφ(Eγ), ”photon spectrum” or

E2
γ

dNγ

dE
(Eγ) ∼ E2

γφ(Eγ), ”spectral energy distribution” (2.46)



24 CHAPTER 2. RADIATIVE PROCESSES

Cooling law: Ė ∝ Eγcoole

Relation between photon and electron energies: Eγ ∝ Eσe
Electron spectrum: dNe/dEe ∝ E−Γ

e

Emission spectrum: dNγ/dEγ ∝ E
γcool+1−Γe−2σ

σ
γ

Evolution of electron spectrum: Γinj → Γinj + γcool − 1

γcool σ

curvature radiation 4 3

synchrotron radiation 2 2

inverse Compton (T) 2 2

inverse Compton (KN) 0 1

Bremsstrahlung 1 1

The first representation for the photon flux, in units of ”photons/(cm2s eV)” is called the ”differential
spectrum”, i.e. it is the photon count rate per unit detector area per unit time and per unit energy
interval. The second representation provides a fair judgement of the signal statistics in different energy
bands, because it gives the count rate of photons per unit detector area per decade of energy. Finally,
the third representation, often called ”Spectral Energy Distribution” or SED of the source, provides
an estimate of the ” emitted power per energy decade”. This representation is useful for building
physical models of the sources. It allows to judge in which energy band most of the source power is
emitted.

2.5 Cyclotron emission / absorption

Considering the curvature radiation, we have assumed that the emitting charged particle moves along
a circular trajectory of an arbitrary radius R. In the particular example of pulsars, this radius was
estimated to be comparable to the size of the emitting system (about 10 km, which is the size of the
neutron star). Another possibility is that the emitting particles are confined to much smaller distance
scales than the entire source size.

This is the case for the particles moving in magnetic fields. In this case particles spiral along
magnetic field lines, being confined within the distance equal to the gyroradius RL. The gyroradius
is readily found from the second law of Newton,

ma =
mv2

RL
= evB (2.47)

which gives

RL =
mv

eB
(2.48)

The angular frequency of gyration is just

ωB =
v

RL
=
eB

m
' 12

[
B

1012 G

] [
m

me

]−1

keV (2.49)

Non-relativistic particles moving in magnetic field emit dipole radiation at the frequency (energy)
ωB. This emission is called cyclotron emission. This emission is difficult to observe (remember that
astronomical observations start from radio band, in the frequency range starting from 100 MHz, which
correspond to photons of the energies higher than 10−6 eV. If the magnetic field in an object is lower
than ∼ 100 G, the cyclotron emission is not observable. At the same time, strong magnetic fields in
astronomical sources might reveal themselves through the characteristic cyclotron emission features.
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2.5.1 Astrophysical example (accreting pulsars)

Such features are observed in the spectra of X-ray accreting pulsars. These systems contain magnetised
neutron stars, but there is no particle acceleration in the pulsar magnetosphere. Instead, there is
ionised matter right next to the surface of the neutron star. The neutron star is magnetised, so that
electrons and protons/nuclei gyrate in the magnetic field. The magnetic field is the dipole field of the
star, so it is very homogeneous (on small distance scales).

Figure 2.6: Spectrum of X-ray accreting
pulsar V 0332+53, showing a series of cy-
clotron lines [10]. Upper panel shows the
overall spectrum, lower panels show the
deviations of the data from the model,
first without inclusion of the lines, and
then after addition of one, two three cy-
clotron lines. The spectrum is in ”nor-
malised counts” units, which is just a
histogram of photon counts in a given
energy bin. It is different from the con-
ventional spectra in physical units of flux
(e.g. ”photons per cm2 and second”).
Conversion from ”normalised counts” to
physical units requires a knowledge of en-
ergy response of the detector.

The gyroradius of electrons in the strong dipole field of
the neutron star is extremely small:

RL =
mev

eB
' 10−9v

[
B

1012 G

]−1

cm (2.50)

This is a microscopic radius which is comparable to the
deBroglie wavelength

λdB =
1

mev
' 4× 10−11v−1cm (2.51)

If

B >
m2
ev

2

e
' 4× 1013v2 G (2.52)

the spread of electron wavefunction is larger than the gy-
roradius. This means that the motion of electrons in mag-
netic field should be considered as a quantum mechanical
problem.

In the quantum mechanical settings, we are solving the
Schroedinger equation

ĤΨ = EΨ (2.53)

with the Hamiltonian

Ĥ =
1

2m

(
~̂p− e ~A

)2
(2.54)

For magnetic field directed along z axis, Bz 6= 0, the vector
potential ~A could be chosen in the form

Ay = xB;Ax = Az = 0. ~B = ~∇× ~A = (0, 0, B). (2.55)

The resulting Schroedinger equation is then

1

2m

[
−
(
∂

∂x

)2

+

(
i
∂

∂y
− exB

)2

−
(
∂

∂z

)2
]

Ψ = EΨ

(2.56)
The Hamiltonian does not depend on y, z, so that py, pz
is are integrals of motion. The i∂/∂z i∂/∂y in the above
equation could then be replaced by py, pz eigenvalues:

1

2m

[
−
(
∂

∂x

)2

+ (py − exB)2

]
Ψ =

(
E +

p2
z

2m

)
Ψ (2.57)
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The last equation is a Schroedinger equation with quadratic
potential, i.e. is that of a harmonic oscillator. The solutions
of this equation are known to form a discrete spectrum

En −
p2
z

2m
= (n+ 1/2)

eB

m
= (n+ 1/2)ωB (2.58)

Thus, electrons moving in strong magnetic field close to the neutron star sit on discrete energy levels
(called Landau levels), similarly to electrons in an atom.

Similarly to electrons in atoms, the spectra of emission and absorption from electrons at Landau
levels are discrete. Being the spectra of harmonic oscillators, they are formed by series of equidistant
lines. Measurement of the line energies provides a measurement of the magnetic field close to the
neutron star surface. Fig. 2.6 shows an example of observation of cyclotron line series in the spectrum
of one of the accreting pulsars, V 0332+53, done by INTEGRAL telescope [10].

The line energies are in the 10 keV band. From Eq. (2.49) we infer that the magnetic field
strength in the photon emission region is about 1012 G. This magnetic field is much stronger than the
fields which are encountered in laboratory conditions (which are . 105 G for the strongest man-made
magnets). They are also much higher than the fields of normal stars. The magnetic fields at the
surface of the Sun reach at most kG strengths.

2.6 Synchrotron emission

Cyclotron emission / absorption is produced by non-relativistic particles gyrating in magnetic field. If
the particles are relativistic, the properties of the dipole electromagnetic radiation due to the gyration
in magnetic field change.

Basic relations for the energy of synchrotron photons and power of synchrotron emission could
be found directly from the formulae for dipole and, in particular, for curvature radiation simply via
substitution of the relativistic expression for the gyroradius (the relativistic analog of Eq. (2.48))

RL =
Ee
eB
' 3× 107

[
Ee

1010 eV

] [
B

1 G

]−1

cm (2.59)

instead of an arbitrary R in the corresponding formulae. This exercise with Eq. (2.24) gives

εsynch =
γ3

RL
=
eBE2

e

m3
e

' 5

[
B

1 G

] [
Ee

1010 eV

]2

eV (2.60)

for the energy of synchrotron photons. Note that contrary to the energy of curvature radiation photons,
which scales as E3

e , the energy of the synchrotron photons grows only as E2
e with the increase of the

electron energy. This is because the curvature radius of electron trajectory expands with increasing
electron energy.

Substituting RL at the place of R in Eq. (2.25) we find the energy loss rate on the synchrotron
emission:

−dEe
dt
' 2

3

e4B2E2
e

m4
e

' 4× 105

[
B

1 G

]2 [ Ee
1010 eV

]2

eV/s (2.61)

The energy loss rate grows only as E2
e with the increase of the electron energy. The synchrotron loss

time is then

tsynch =
Ee

−dEe/dt
=

3m4
e

2e4B2Ee
' 2× 104

[
B

1 G

]−2 [ Ee
1010 eV

]−1

s (2.62)

We could also re-use the results of Section 2.4 to find the spectrum of a broad band distribution
of electrons, e.g. from a powerlaw type spectrum with the slope Γe:

dNe

dEe
∼ E−Γe

e (2.63)
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Repeating the calculation leading to Eq. 2.43 we find that for the synchrotron emission both pa-
rameters γcool and σ are equal to 2, so that the spectrum of synchrotron emission has the photon
index

φ(Eγ) =
dNγ

dEγ
∼ E−Γsynch

γ , Γsynch =
Γe + 1

2
(2.64)

We could also re-use the formulae for the evolution and steady state spectra of particles with
account of energy loss, derived in Section 2.3, to understand the influence of the synchrotron energy
loss on the spectrum of high-energy electrons. The evolution of the spectrum of electrons is governed
by Eq. (2.35) with the energy loss rate being due to the synchrotron emission, Eq. (2.61). In the
absence of escape, its general steady state solution has the form (2.36).

In the particular case of mono energetic injection, Q(E) ∼ δ(E − E0), the solution has the form
(2.37), which in the case of Ė ∼ E2 is

dNe

dEe
∼
{
E−2
e , E < E0

0, E > E0
(2.65)

More generally, if the acceleration process results in injection of electrons in the energy range above
some limiting lowest energy (the injection spectrum has a low-energy cut-off), synchrotron cooling
leads to formation of an E−2 type spectrum of the ”cooling tail” below the minimal injection energy.

The synchrotron emission from the ”cooling tail” has a powerlaw-type spectrum with the slope
Γsynch = (2 + 1)/2 = 1.5, see Eq. (2.64).

Another useful example if that of the effect of synchrotron energy loss on the powerlaw type
injection spectrum Q(E) ∼ E−Γinj . In this case, substituting qcool = 2 into Eq. (2.39) we find

dNe

dEe
∼ E−(Γinj+1)

e (2.66)

Thus, synchrotron cooling leads to a ”softening” of the initial injection spectrum Γinj → Γinj+1. This
corresponds to a larger and larger ”pile up” of the cooled electrons at lower and lower energies. Such
a ”pile up” could be understood qualitatively if one recalls that the kinetic equation (2.35) describes
motion of particles in energy space. The speed of this motion, Ė is decreasing with the decrease of
the energy, so that the particles get gradually ”stuck” while movingg to lower energy bins. This leads
to accumulation of larger number of particles in lower energy bins.

Suppose that the injection spectrum is an E−2 type powerlaw (this is typical slope of the spectrum
resulting from the shock acceleration, as we will see later on). Synchrotron cooling would soften the
spectrum down to an E−3 type spectrum. The photon index of the synchrotron emission from the
cooled distribution of electrons would then have the slope Γ = (3 + 1)/2 = 2.

2.6.1 Astrophysical example (Crab Nebula)

A prototypical example of the high-energy source is Crab nebula, which is a nebular emission around a
young (103 yr old) pulsar. It is one of the brightest γ-ray sources on the sky and serves as a calibration
target for most of the γ-ray telescopes. The spectrum of emission from the Crab nebula spans twenty
decades in energy, from radio (photon energies 10−6 eV) up to the Very-High-Energy γ-ray (photon
energies up to 100 TeV) band. Large, parsec-scale size and moderate distance (2 kpc) to the nebula
enable detailed imaging of the source in a range of energy bands, from radio to X-ray. The composite
radio-to-X-ray image of the nebula is shown in Fig. 2.7, top panel.

Radio to X-ray and up to GeV γ-ray emission from the nebula presents a composition of several
broad powerlaw-type continuum spectra, with the photon indices changing from Γ ' 1.3 in the radio-
to-far-infrared band to Γ ' 2.2 in the 1-100 MeV band. Such powerlaw type spectra extending down
to the infrared and radio domains are commonly interpreted as being produced by the synchrotron
emission mechanism.
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Figure 2.7: Multiwavelength image (left) and spectrum (right) of the Crab pulsar wind nebula. In
the image (from [11]): blue colour is X-ray, green is in visible light and red is radio emission. In the
spectrum (from [12]) black data points show time-averaged spectrum of the source. Blue and violet
points show examples of spectra during GeV band flares.

Measurement of the slope of the synchrotron spectrum provides information on the shape of the
parent electron spectrum, which is of a ”broken powerlaw” type. Electrons responsible for the emission
in the radio-to-visible energy range are characterised by a spectrum with the slope close to Γe ' 2,
since the synchrotron spectrum has the slope close to Γsynch = 1.5 (see Eq. (2.64)). One could
tentatively interpret this E−2 type spectrum either as an un-cooled injection spectrum of electrons,
or as a low energy ”cooling tail” formed below the low-energy cut-off in the injection spectrum of
electrons, see Eq. (2.65).

In the energy range above 10 eV and up to the multi-MeV range the slope of the synchrotron
spectrum is close to Γsynch = 2, so that the slope of the parent electron spectrum is close to Γe ' 3. The
change of the slope from Γe ' 2 at lower energies to Γe ' 3 at higher energies might be conveniently
interpreted as the effect of synchrotron cooling on the initial electron injection spectrum Γinj = 2,
since the cooling results in a softening of the spectrum by ∆Γe = 1 (see Eq. (2.66)). The ”cooling
break” in the spectrum of electrons, by ∆Γe = 1 occurs at the energy at which the cooling time is
approximately equal to the time since the start of injection of high-energy electrons. Electrons with
energies lower than the break energy did no have time to loose their energy since the beginning of
injection and their spectrum is the unchanged injection spectrum.

Let us assume that the break observed in the spectrum of synchrotron emission in the Crab nebula
is due to the ”cooling break’ in the spectrum of electrons. The time passed since the start of injection
in the nebula is the age of the system, which is about 103 yr (i.e. the time since the supernova
explosion which led to formation of the system). The synchrotron cooling time is given by Eq. (2.62):

tsynch ' 103

[
B

100 µG

]−2 [ Ee
1012 eV

]−1

yr (2.67)

Thus, an estimate of the cooling time provides a constraint on the energy of electrons responsible for
the synchrotron emission in the 1-10 eV range and the strength of magnetic field in the nebula. The
energy of synchrotron photons is also determined by the energy of electrons and the strength of the
magnetic field, but in a different combination, see Eq. (2.60):

εsynch ' 5

[
B

100 µG

] [
Ee

1012 eV

]2

eV (2.68)

combining the two measurements (of εsynch and tsynch) we find that if the break in the spectrum
of synchrotron emission from the Crab nebula is due to the synchrotron cooling effect on electron
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spectrum, the magnetic field in the nebula should be close to

B ∼ 100 µG (2.69)

The energies of electrons for which the cooling time is about the age of the Crab nebula are

Ee,break ∼ 1012 eV (2.70)

From Fig. (2.7) one could see that the spectrum of synchrotron emission has a high-energy cut-off
in the 100 MeV range, where is sharply declines. Electrons which produce synchrotron emission in
the 100 MeV energy range should have energies (see Eq. (2.68))

Ee,max ∼ 1− 10 PeV (2.71)

range. This shows that Crab nebula hosts a remarkably powerful particle accelerator. For comparison,
the energies of particles accelerated in the most powerful man-made accelerator machine, the Large
Hadron Collider, are in the 10 TeV range, which is three orders of magnitude lower.

Up to recently, Crab Nebula was believed to be a non-variable source and was conventionally used as
a calibration sources for X-ray and γ-ray telescopes, due to its high flux and stability. However, recent
observations by Fermi and AGILE γ-ray telescopes have revealed variability of the γ-ray emission
from Crab, in the form of short powerful flares, during which the GeV flux of the source rises by an
order of magnitude, see Fig. 2.7. These flares occur at the highest energy end of the synchrotron
spectrum and have durations in the tflare ∼ 1− 10 d∼ 105− 106 s range. Comparing the synchrotron
cooling times of the 1-10 PeV electrons with the duration of the flares, one finds

tsynch ' 24

[
B

100 µG

]−2 [ Ee
1016 eV

]−1

d ≥ tflare (2.72)

This implies that the flares occur in the innermost part of the nebula, in the regions with higher mag-
netic field (B ∼ 500 µG), otherwise, long synchrotron cooling time would smooth the flare lightcurve
on the time scale tsynch and the flare would not have 1 d duration.

The flaring time scale is most probably directly related to the time scale of an (uncertain) accel-
eration process, which leads to injection of multi-PeV electrons in the nebula. We will come back to
this issue later on in the discussion of the properties of pulsars and their nebulae.

2.6.2 Proton synchrotron emission

In most of the astrophysical examples, synchrotron emission is produced by high-energy electrons.
Higher mass of protons, compared to electrons, makes synchrotron emission rather inefficient as an
energy loss channel. Indeed, rescaling Eqs. (2.60) and (2.62) by substituting mp instead of me, we
find, for the magnetic field in the Crab Nebula

εsynch,p =
eBE2

e

m3
p

' 10−1

[
B

10−4 G

] [
Ee

1016 eV

]2

eV (2.73)

tsynch,p =
Ee

−dEe/dt
=

3m4
p

2e4B2Ee
' 1012

[
B

10−4 G

]−2 [ Ee
1016 eV

]−1

yr (2.74)

Thus, cooling time of protons with 10 PeV energy (comparable to that of electrons) in the Crab
Nebula is, in fact, larger than the age of the Universe, so that the synchrotron energy loss is completely
unimportant for them.

Nevertheless, proton synchrotron emission could be an important energy loss mechanism for Ultra-
High-Energy Cosmic Ray (UHECR) protons, if they are accelerated in regions with strong magnetic
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field, like e.g. the field near supermassive black holes in the AGN, B ∼ 104 G. In this case, the
synchrotron loss time is

tsynch,p =
Ee

−dEe/dt
=

3m4
p

2e4B2Ee
' 3

[
B

104 G

]−2 [ Ee
1019 eV

]−1

s (2.75)

which is shorter than the time in which proton crosses the region of the size about the black hole
horizon

tBH = RBH/c = GNMBH ∼ 30

[
M

107M�

]
s (2.76)

If the acceleration process works on the distance scale R ∼ RBH , proton synchrotron emission is
an important energy dissipation mechanism reducing the maximal attainable energies of particles.
An observational signature of the efficiently operating proton synchrotron energy loss would be the
synchrotron γ-ray emission from black holes working as particle accelerators. The emission is expected
in the energy range

εsynch,p =
eBE2

e

m3
p

' 1013

[
B

104 G

] [
Ee

1019 eV

]2

eV (2.77)

i.e. in the very-high-energy γ-ray band.
Inspection of an example γ-ray emission spectrum of a nearby active supermassive black hole in

the centre of M87 galaxy, from Fig. 2.4 shows that the γ-ray spectra of supermassive black holes
extend into the E ∼ 1013 eV energy range. Thus, it is possible that UHECR acceleration process is
on-going near these black holes and the observed radiation is produced via synchrotron emission from
UHECR protons.

2.7 Compton scattering

Figure 2.8: The spectrum of Extragalac-
tic Background Light. Grey band shows
the range of uncertainties of currently ex-
isting measurements.

The spectrum of emission from the Crab nebula has ap-
parently two ”bumps”: one starting in the radio band and
ending in the GeV band and the other spanning the 10 GeV-
100 TeV needy range with a peak in at ∼ 100 GeV. We
have interpreted the radio-to-γ-ray bump as being the re-
sult of synchrotron emission from high-energy electrons in
the source. The synchrotron emission is an ”inevitable” ra-
diative loss channel in a wide range of astronomical sources,
because most of the known sources possess magnetic fields.
There is practically no place in the Universe without mag-
netic field.

Similarly to magnetic fields, the whole Universe is also
filled with radiation fields. Radiation was generated by the
hot Early Universe. This relic radiation survives till today
in the form of Cosmic Microwave Bakcground (CMB). CMB
is thermal radiation with temperature TCMB ' 2.7 K and
its present in equal amounts everywhere in the Universe.
The spectrum of CMB is the Planck spectrum. Its energy
density is

UCMB =
π2

15
T 4 ' 0.25

[
TCMB

2.7 K

]4 eV

cm3
(2.78)

and the number density of CMB photons is

nCMB =
2ζ(3)

π2
T 3 ' 4× 102

[
TCMB

2.7 K

]3 ph

cm3
(2.79)



2.7. COMPTON SCATTERING 31

Apart from the universal CMB photon background, radiation fields are generated by collective
emission from stars and dust in all galaxies over the entire galaxy evolution span. This leads to
production of the so-called ”Extragalactic Background Light” with a characteristic two-bump spectrum
shown in Fig. 2.8. The bump at the photon energy ∼ 1 eV is produced by the emission form stars,
the bump at 10−2 eV is due to the scattering of starlight by the dust. Fig. 2.8 shows the level of
the starlight and dust emission averaged over the entire Universe. Inside the galaxies, the densities of
both the starlight and dust photon fields are enhanced by several orders of magnitude.

Still denser photon fields exist inside astronomical sources, e.g. close to the stars or in the nuclei
of active galaxies.

High-energy particles propagating through the photon backgrounds could occasionally collide with
the low energy photons and loose / gain energy in the scattering process. This phenomenon is called
Compton scattering.

The high-energy bump in the spectrum of Crab nebula is produced by a variety of the Compton
scattering process in which high-energy electrons collide with low energy photons present in the nebula.
This results in the transfer of energy from electrons to photons so that the low-energy photons are
converted into high-energy γ-rays and electrons loose their energy. This process is called ”inverse
Compton scattering”. In this section we consider different aspects of the Compton scattering process.

2.7.1 Thomson cross-section

The process of charged particle – photon scattering could be described within classical mechanics as
re-radiation of waves by the particle accelerated by the electric field of the incident electromagnetic
wave.

As an initial example, we consider this process for a non-relativistic electron. The force acting on
the charged particle is the Lorentz force

~F = e( ~E + [~v × ~B]) (2.80)

The wave has electric and magnetic fields of comparable strength. This means that the term propor-
tional to the magnetic field in the Lorentz force is much smaller than the electric field term, because
we consider v � 1. Let us consider the wave propagating in z direction, so that the electric and
magnetic field vectors are in the xy plane. The components of acceleration of the particle are

ax '
e

m
Ex

ay '
e

m
Ey (2.81)

For a linearly polarised plane wave, the electric field components at a given position vary as

Ex = E0 sin(ωt+ φ) (2.82)

where ω is the wave angular frequency. Thus, ax oscillates periodically.

Using the Larmor formula, we find the power of emission by the accelerated particle〈
dE
dt

〉
=

2

3
e2
〈
a2
x

〉
=

2

3

e4

m2

〈
E2
x

〉
(2.83)

(we introduce curly font for the emitted energy, to avoid confusion with electric field). Time averaged
emission power depends on

〈
E2
x

〉
=

ω

2π

∫ 2π/ω

0
E2

0 sin2(ωt+ φ)dt =
2E2

0

π

∫ π/2

0
sin2 xdx =

E2
0

2
(2.84)
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Substituting into Eq. (2.83 we find 〈
dE
dt

〉
=

1

3

e4

m2
E2

0 (2.85)

In scattering theory, the cross-section is defined as the ratio of the emitted energy to the incident
energy flux ~S

σ =
dE/dt
|~S|

(2.86)

The energy flux of the incident wave is given by the Poynting vector

〈
~S
〉

=

〈
~E × ~B

〉
4π

=
E2

0

8π
(2.87)

substituting this into expression for the cross-section we find

σ =
dE/dt
|~S|

=
8π

3

e4

m2
(2.88)

If the scattering centre is an electron, e is the electron charge and m = me is its mass. In this case
the cross-section is a fundamental constant called Thomson cross-section:

σT =
8πe4

3m2
e

' 6.65× 10−25 cm2 (2.89)

The combination of fundamental constants

re =
e2

me
' 3× 10−13 cm (2.90)

is called classical electron radius. It also usually enters the tables of fundamental constants. The
Thomson cross-section is then

σT =
8π

3
r2
e (2.91)

that is, the scattering cross-section is close to the ”geometrical” cross-section of a disk with the radius
equal to the classical electron radius.

Using the definition of σT one could rewrite the expression for the power of emission as

dE
dt

=
8πe4

3m2
e

E2
0

8π
= σTUrad (2.92)

where we have introduced the notation for the energy density of the incident radiation

Urad =

〈
~E2

8π
+
~B2

8π

〉
=
E2

0

8π
(2.93)

2.7.2 Example: Compton scattering in stars. Optical depth of the medium. Ed-
dington luminosity

The most widespread example of Compton scattering in astronomy is the scattering of photons inside
stars. The nuclear reactions which power stellar activity proceed most efficiently deep in the stellar
cores, where temperatures are significantly higher than at the stellar surface. However, we are not able
to observe directly radiation from the nuclear reactions, because the star is ”opaque” to the radiation.
The process which prevents photons produced deep inside the stars from escaping is the Compton
scattering.
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Let us take the Sun as an example. The average density of the Sun is

n� =
M�

(4π/3)R3
�mp

' 1024 cm−3 (2.94)

From the definition of the scattering cross-section, we find that the mean free path of photons with
respect to collisions with electrons inside the Sun is just

λ =
1

σTn�
' 1 cm (2.95)

This mean free path is much shorter than the distance of the order of the size of the Sun R� '
7 × 1010 cm which the photon needs to cross before leaving the surface of the Sun. Since λ � R�,
none of the photons produced in the core is able to escape. The source is opaque to photons. The
opacity of the source of the size R is often measured in terms of the optical depth, which is, by
definition

τ =
R

λ
(2.96)

In the case of the Sun we find that τ ∼ 1011. The optical depth also describes the law of attenuation of
a directed beam of photons (or of any other particles) by the scattering in the medium. The number
of particles in the beam in z direction entering the medium at z = 0 decreases with distance as

N(z) = N0 exp (−τ(z)) , τ(z) =
z

λ
(2.97)

If we assume that Compton scattering results in random changes of the direction of motion of
photons, we could describe the process of escape of photons from inside the star as a random walk or
diffusion in 3d space. The law of diffusion allows to estimate the time needed for photons to escape
from the core

t =
R2

λ
= τ

R

c
' 1011 s for the Sun (2.98)

Thus, Compton scattering slows down the radiative transfer from the core to the surface of the stars.
Compton scattering is important in stars in still another aspect. Compton scattering of photons

on electrons results in energy transfer between the two particles. In this way a flux of radiation from
a given direction produces pressure on the plasma (radiation pressure). If we imagine a low energy
photon bouncing from an electron, the change of momentum of the photon in result of scattering is
about the momentum itself, ∆p ∼ p ∼ ε, where ε is the photon energy. A flux of photons with density
n transfers an energy to each electron in the plasma at a rate comparable to the power of the scattered
radiation

dE
dt
' εnσT (2.99)

This energy transfer is the result of action of the radiation force dE = Fraddt.
Sun-like stars are supported by the balance of gravity force and pressure of the stellar plasma.

However, in massive stars with much higher luminosity than that of the Sun, the force due to the
radiation pressure competes with the gravity and the equilibrium configuration of the star is supported
by the balance of gravity and radiation pressure force

GNMmp

R2
' εnσT (2.100)

(we assume that the number of protons and electrons in the star is the same). The strongest radiation
pressure force is acting on electrons, stronger gravity force is acting on protons. Expressing the density
of radiation through the luminosity L

εn =
L

4πR2
(2.101)
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and substituting into above equation we find an expression for L through the mass of the star

LEdd =
4πGNMmp

σT
' 1038

[
M

M�

]
erg/s (2.102)

This mass-dependent luminosity, called Eddington luminosity, is, in fact an upper limit on the lu-
minosity of a self-gravitating object. No persistent astronomical source of the mass M could have
luminosity higher than LEdd, because otherwise the source would be disrupted by the radiation pres-
sure force. This limit applies not only to the stars, but also for numerous other source types and we
will see several examples of the use of the Eddington limit later on in the course.

2.7.3 Angular distribution of scattered waves

Figure 2.9: Geometry of Compton scat-
tering.

The angular distribution of the waves emitted by a non-
relativistic scattering centre could be found from a general
formula for the dipole radiation from non-relativistic par-
ticle (2.9)

dE
dtdΩ

=
e2

4π
|a|2 sin2 θ (2.103)

where θ is the angle between the direction of acceleration
and the direction of the scattered wave. To calculate this
angle, we choose the coordinate system in the following
way (see Fig. 2.9). The z axis points in the direction of the

incident wave. The xz plane contains the wave vector of the incident wave, ~k0 and the wave vector
of the scattered wave, ~ks. The y axis is orthogonal to the xz plane. In such notations we rewrite the
above equation as

dE
dtdΩ

=
e2

4π

∣∣∣~a× ~ks∣∣∣2 =
e4

4πm2

∣∣∣ ~E × ~ks∣∣∣2 =
e4

4πm2

∣∣∣( ~Ex + ~Ey)× ~ks
∣∣∣2 (2.104)

where ~Ex, ~Ey are components of the electric field along x and y axes. The vector ~Ex × ~ks is directed

along the y axis, while the vector ~Ey × ~ks lies in the xz plane. They are orthogonal to each other.
This implies that the square of the norm of their sum is the sum of their norms square

dE
dtdΩ

=
e4

4πm2

(∣∣∣ ~Ex × ~ks∣∣∣2 +
∣∣∣ ~Ey × ~ks∣∣∣2) (2.105)

~Ey is orthogonal to ~ks, so that their vector product is just the product of the norms〈∣∣∣ ~Ey × ~ks∣∣∣2〉 =
1

2
E2

0,y (2.106)

where we have used the fact that the time averaging of the electric field norm square results in the
factor 1/2 (see Eq. (2.84)). Introducing the angle α between the direction of the incident and scattered
wave, one could find that θ = π/2− α. Thus〈∣∣∣ ~Ex × ~ks∣∣∣2〉 =

1

2
E2

0,x cos2 α (2.107)

Let us assume that the incident wave is unpolarised, so that E0,x ' E0,y ' E0/
√

(2) for any choice of

the scattering direction ~ks. Then we could add the two terms together to find

dE
dtdΩ

=
e4E2

0

16πm2

(
1 + cos2 α

)
(2.108)
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Division by the energy flux of the incident wave gives the differential cross-section of Compton scat-
tering

dσ

dΩ
=
dE/(dtdΩ)

S
=

e4

2m2
(1 + cos2 α) (2.109)

As a verification, we could find that integrating the differential cross-section over the solid angle gives
the Thomson cross-section ∫

dΩ
dσ

dΩ
= σT (2.110)

Figure 2.10: Principle of oper-
ation of Compton telescope

For a polarised wave, the amplitude of Compton scattering de-
pends not only on the angle α, but also on the azimuthal angle φ,
since θ is a function of both α and φ. This fact could be used to
measure the polarisation of the incident radiation. It is indeed used
in telescopes for this purpose. An example of a ”gamma-ray po-
larimeter” based on this principle is given by POLAR detector for
the measurement of polarisation of Gamma-ray bursts. We will stop
at this issue in a subsection discussing Compton telescopes later on.

2.7.4 Thomson scattering

To find the energy transfer from electron to photon or vise versa we
write down the energy-momentum conservation law

p
e,i

+ p
γ,i

= p
e,f

+ p
γ,f

(2.111)

where the subscripts e, γ refer to electron and photon and i, f are for
initial and final state. We could re-express this as

m2
e = |pe,f |2 = (p

e,i
+ p

γ,i
− p

γ,f
)2 = m2

e + 2(p
e,i
p
γ,i
− p

e,i
p
γ,f
− p

γ,i
p
γ,f

) (2.112)

Figure 2.11: Cross-section of interaction
of photons with medium (Germanium) as
a function of energy.

Let us consider the system of reference where the elec-
tron is initially at rest, that is p

e,i
= (me, 0, 0, 0) in com-

ponents. We could choose the x axis along the initial di-
rection of motion of photon in this system so that p

γ,i
=

εi(1, 1, 0, 0). Then we choose the y axis orthogonal to x in
the plane of scattering, so that p

γ,f
= εf (1, cos θ, sin θ, 0),

where we have introduced the initial and final energies of
the photon, εi, εf and the scattering angle θ. Substituting
the component in the last equation we find

meεi = meεf + εiεf (1− cos θ) (2.113)

or, reexpressing εf ,

εf =
εi

1 + εi
me

(1− cos θ)
(2.114)

For example, for the scattering at zero angle θ = 0 we find
that there is no energy transfer between electron and photon: εi = εf . For the scattering at θ = π we
have εf = εi/(1 + 2εi/me) < εi. In this case the energy of photon is used on the recoil of electron.

Scattering of low energy photons by non-relativistic electrons is characterised by tiny changes of
the photon energy, so that εf ' εi. This limits is called Thomson scattering (e.g. close to the surface
of the star).
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2.7.5 Example: Compton telescope(s)

The above Eq. (2.114) is the main ingredient in the principle of operation of the so-called Compton
telescopes, i.e. telescopes which detect γ-rays though the Compton scattering effect. Imagine a setup
in which a moderate energy γ-ray enters a detection volume and scatters on an electron at a point 1
as shown in Fig. 2.10.

The γ-ray transfers a part of its energy Ee1 = εf − εi to an electron. Depending on the choice
of the detection medium, the energy of electron can be measured in a variety of ways. For example,
if the medium is a scintillator, the scintillation signal could be sampled by photomultiplier sensors.
Otherwise, if the medium is a semiconductor, electron excitation will lead to production of electron-
hole pairs which could then be sampled in the form of a current flowing through an electric circuit
including the detector.

The scattered photon continues its path an could interact second time inside the detector medium
at the point 2. The energy of the scattered photon εf is lower than εi and the second interaction could,
with a good chance, be photoelectric absorption, rather than Compton scattering. This is because the
Compton scattering dominates the photon-medium interaction cross-section only in a narrow energy
interval from εi ∼ 100 keV to about the rest energy of electron, εi ∼ me = 511 keV. At lower energies
εi . 100 keV the highest interaction cross-section is that of the photoelectric effect, see Fig. 2.11 for
an example of the Germanium (semiconductor) detection medium.

Photoelectric absorption also transfers the photon energy to (another) which gets the energy
Ee2 = εf . Measuring Ee2 in the same way as Ee1 one could constrain parameters of Compton
scattering at point 1. Indeed, the unknown parameters are the photon energy εi and the scattering
angle θ. Measuring Ee2 = εf and Ee1 = εi − εf one could find both εi and θ from Eq. (2.114).

Figure 2.12: COMPTEL tele-
scope which was operational
on Compton Gamma-Ray Ob-
servatory

Knowing the scattering angle θ and the direction of the line from
point 1 to point 2, one could reconstruct the initial photon direction,
provided that the scattering plane is well constrained. Otherwise, in
the absence of information on the orientation of the plane of scat-
tering, there remains a residual uncertainty in the direction of the
initial photon: it could come anywhere from a cone with the axis
along 1-2 direction and the opening angle θ. The orientation of the
plane of scattering could, in principle, be constrained if the direction
of motion of the electron scattered at point 1 is measured. However,
this is usually challenging because the electron immediately experi-
ences miltiple scattering in the detector volume and quickly looses the
”memory” of its initial direction. In this way, the measurements of
the directions of photons detected by Compton telescopes are usually
not spots on the sky, but rather ”rings on the sky”.

The only space-based Compton telescope which was operational
up to now was COMPTEL on board of Compton Gamma-Ray Ob-
servatory mission by NASA. It was operation in the 90th of the last
century. The setup of the telescope is shown in Fig. 2.12. In the
COMPTEL setup the ”scatterer” and ”absorber” detectors (contain-
ing, respectively, the scattering point 1 and the absorption point 2)
were separated by a distance of about 1 m onto two sub-detectors. Both sub-detectors were scintilla-
tors (liquid scintillator for the scatterer and NaI crystals for the lower absorber detector). The large
separation between the sub-detectors was necessary for suppression of the background of up-going
particles from the direction of the Earth. The up-going particles were rejected based on the ”time-of-
flight” measurement principle: they produced first signal in the ”absorber” and second signal in the
”scatterer”, while the γ-rays from the sky produced first the signal in the ”scatterer” and then in the
”absorber”.
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The separation of the two detectors, although useful for the background rejection, strongly reduced
the efficiency of the telescope. Large fraction of the scattered γ-rays just did not arrive at the lower
detector. Because of this, COMPTEL had a limited sensitivity and detected only about 10 sources
on the sky. Our lack of sensitive instruments (and knowledge) in the MeV energy domain is known as
the ”MeV sensitivity gap”. Telescopes operating in adjacent energy bands (below 100 keV and above
100 MeV are much more sensitive and our knowledge of the sky in those energy bands is much more
complete.

2.8 Inverse Compton scattering

Up to now we have considered scattering of photons by electron at rest. In this case it is the photon
which transfers a fraction of its energy to electron. If electrons are moving, opposite is also possible:
electron could transfer a fraction of its energy to photon. In this case Compton scattering works as
a radiative energy loss for high-energy electrons. This process is called inverse Compton scattering.
Below we derive necessary formulae describing this radiative energy loss.

2.8.1 Energies of upscattered photons

The case of arbitrary initial four-momentum of electron could be reduced to the case of electron in
rest via a transformation to the coordinate system comoving with the electron. Suppose that electron
moves with velocity v along x axis in the ”lab” frame. In the same frame photon moves at an angle
θ0 w.r.t. electron and its four-momentum is p

γ,i
= εi(1, cos θ0, sin θ0, 0). Lorentz transformation of

photon four-momentum to the electron comoving frame changes the energy as

ε̃i = εiγ(1− v cos θ0) (2.115)

where γ is the Lorentz factor of electron. The final energy of scattered photon in the comoving frame
is

ε̃f =
ε̃i

1 + ε̃i
me

(1− cos θ)
(2.116)

where θ is the scattering angle in the comoving frame. The final photon energy in the lab frame is
related to ε̃f also via Lorentz transformation

εf = ε̃fγ(1 + v cos θf ) =
εiγ

2(1− v cos θ0)(1 + v cos θf )

1 + ε̃i
me

(1 + cos θ)
(2.117)

where θf is the angle of outgoing photon w.r.t. the x axis in the comoving frame.

Now let us consider situation in which the energy of the incident photon in the electron comoving
frame is small

ε̃i � me (2.118)

For this to be true we have to require

εiγ(1− v cos θ0)� me (2.119)

which, by itself requires

εiEe � m2
e (2.120)

where Ee = γme is the initial electron energy. Compton scattering of low-energy photons by relativistic
electrons in the regime where low-energy photons satisfy condition (2.120) is called ”inverse Compton
scattering in Thomson regime”.
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In this case Eq. (2.117) simplifies and we find

εf ' εiγ2(1− v cos θ0)(1 + v cos θf ) (2.121)

Now assume that the low energy photons form an isotropic radiation field and the angle θ0 is random.
In the electron comoving frame, the scattering amplitude is comparable in all the directions, so that
the angle θf also takes arbitrary values. This means that a good estimate of the average final energy
of photons is

εf ' εiγ2 ' 3
[ εi

1 eV

] [ Ee
1010 eV

]2

GeV (2.122)

Thus, contrary to the scattering of waves on electron at rest, where the scattering process took the
energy from the wave, here the energy is transferred from electron to photons and the process converts
low energy photons into high energy γ-rays. Such process is called ”inverse” Compton scattering.

Note that as long as condition (2.120) is satisfied, the final energy of photons εf is always

εf � Ee (2.123)

At each scattering event electron transfers only a small fraction of its energy to the photon.
The scattering angle is approximately arbitrary in the comoving frame. However, in the lab frame

the scattering would appear strongly beamed in forward direction, within a cone with an opening
angle γ−1.

2.8.2 Energy loss rate of electron

To calculate the energy loss rate of electron due to the inverse Compton scattering of low energy
photons, we could use the non-relativistic result which is valid in the frame comoving frame

dẼ
dt̃

= σT Ũrad (2.124)

Actually, the same result should hold also in the lab frame since dt and E are both 0th components of
covariant four vectors and transform identically under Lorentz transformation. In this frame it would
express the energy carried away by the radiation

The r.h.s. of Eq. (2.124) contains the energy density of radiation in the comoving frame, Ũrad. To
express this quantity in the lab frame, one could notice that the density of photons n(ε) also transforms
under Lorentz transformation in the same way as dt, because the number of photon in a given volume
element n(ε)d3x is a relativistic invariant as well as the four-volume element dtd3x. Thus, using Eq.
(2.115) the density of photons in the comoving frame could be expressed through the density in the
lab frame as

ñ = nγ(1− v cos θ0) (2.125)

The energy density of photons is

Ũrad = ε̃ñ = εnγ2(1− v cos θ0)2 (2.126)

and
dE
dt

= σTUradγ
2(1− v cos θ0)2 (2.127)

If the low energy photon field is isotropic, we could find average energy loss rate into radiation by
averaging over the angle θ0 which gives

dE
dt

=
4

3
σTUrad

(
γ2 − 1

4

)
(2.128)



2.8. INVERSE COMPTON SCATTERING 39

The energy loss of electron is the energy carried away by electron minus the initial energy of photon
field passing by electron every second, σTUrad. Subtracting this from the above expression we find

dEe
dt

=
4

3
σTUrad(γ

2 − 1) =
4

3
σTUradγ

2β2 (2.129)

Similarly to the previously considered cases of synchrotron and curvature energy losses, it is useful
to introduce the inverse Compton cooling time via a relation

tIC =
Ee

dEe/dt
=

3

4

m2
e

σTUradβ2Ee
' 3× 107

[
Urad

1 eV/cm3

]−1 [ Ee
1010 eV

]−1

yr (2.130)

2.8.3 Evolution of particle distribution with account of radiative energy loss

Eqs. (2.129), which express the energy loss rate of electron due to a radiative energy loss shows that
the scaling of the inverse Compton energy loss with electron energy is

dEe
dt
∼ E2

e ∼ Eκe (2.131)

with the index κ = 2, as in the case of synchrotron energy loss. We could directly use the results of
sections 2.3 and 2.4 to find the effect of the inverse Compton energy loss on the spectrum of electrons.

Similarly to previously considered cases of curvature and synchrotron radiation, we consider two
characteristic examples of the steady-state solution of kinetic equation (2.35), neglecting the escape
of particles. The first example is that of the mono energetic injection of electrons at an energy E0,
Q(E) ∼ δ(E − E0). In this case the solution (2.36) of the kinetic equation has the form

fe(E) ∼
{
E−2, E < E0

0, E > E0
(2.132)

Symilarly to the case of synchrotron emission, cooling of electrons via inverse Compton scattering
process leads to formation of a low-energy powerlaw tail in the electron spectrum, with the slope E−2.

Another characteristic example is the case of a powerlaw injection spectrum of electrons, Q(E) ∼
E−Γinj . In this case the solution (2.36) of the kinetic equation takes the form

fe(E) ∼ E−(Γinj+1) (2.133)

Again, similarly to the synchrotron emission, inverse Compton cooling leads to a softening of the
injection spectrum by ∆Γ = +1.

2.8.4 Spectrum of emission from a broad-band distribution of particles

Eq. (2.122) provides an expression for the energy of photons produced in a radiative loss process:

εf ∼ E2
e ∼ Eσe (2.134)

with the index σ = 2, as in the case of synchrotron radiation. Again, we could re-use the previously
derived formulae for the spectrum of emission from a broad distribution of electrons derived in section
2.4.

In this way we find that the spectrum of emission from a powerlaw distribution of electrons
dNe/dE ∼ E−Γe is also a powerlaw with a slope

Γ =
Γe + 1

2
(2.135)
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2.8.5 Example: Very-High-Energy gamma-rays from Crab Nebula

At this point we could come back to the example of the broad band spectrum of the Crab Nebula (see
Fig. 2.7). The synchrotron component of the spectrum is cut-off at GeV energy. Above this energy,
one could see a gradually rising new component which reaches maximum power in the 100 GeV energy
band.

This high-energy component is conventionally attributed to the inverse Compton emission from the
same electrons which produce synchrotron emission at lower energies. In section 2.6.1 we have found
that the shape of the synchrotron spectrum of the Nebula suggests that the synchrotron emission is
produced by electrons forming a broken powerlaw distribution. The break in the electron spectrum
at the energy Ee,break ' 1 TeV is the ”synchrotron cooling” break. Electrons with higher energies
have had enough time to loose their energy via synchrotron radiation, while for electrons of lower
energies the cooling time is longer than the age of the source (103 yr, since the supernova explosion
which led to formation of the Crab pulsar). Energies of electrions emitting synchrotron radiation in
the 100 MeV – GeV energy band reach 1− 10 PeV.

Let us not calculate the properties of inverse Compton emission produced by these electrons. First,
we need to understand which low energy photon field provides most of the target photons for inverse
Compton scattering. The photon fields present in the Crab nebula include the ”universal” soft photon
field, the CMB, with the energy density Urad = 0.25 eV/cm3. Next, since the source is in the Galaxy,
it ”bathes” in the interstellar radiation field, produced by stars and dust in the Galaxy. Crab is not far
for the Sun (DCrab ' 2 kpc distance) and one could estimate the density of the interstellar radiation
field at the location of the Crab based on the knowledge of the local interstellar radiation field density
which is about Urad ∼ 1 eV/cm3.

Finally, the synchrotron radiation produced by the high-energy electrons in the Crab Nebula
also provides abundant target photon field for the inverse Compton scattering. We could estimate
the density of this radiation field from the measured flux of Crab (see Fig. 2.7). The flux reaches
Fcrab ' 10−7.5 erg/cm2s in the visible / IR energy band εph ∼ 1 eV. The size of the innermost part of
the Crab Nebula is about dCrab ' 1 pc. The flux of the photons escaping from the Nebula higher than
the flux detected on Earth by a factor (DCrab/dCrab)

2 ∼ 4× 106. The flux (measured in erg/cm2s) is
related to the energy density of radiation as Fcrab = Uradc, so that the energy density of synchrotron
radiation could be estimated as

Urad = F

(
DCrab

dcrab

)2

' 3
eV

cm3
(2.136)

which is somewhat higher than the estimate of the density of the interstellar radiation field and is an
order of magnitude higher than the CMB energy density. This means that the main source of the soft
photons for inverse Compton scattering in Crab is the synchrotron radiation of the nebula itself.

According to Eq. (2.122), electrons with the energies about Ee,break should upscatter the syn-
chrotron photons with energies εph ' 1 eV up to the energy Eγ ' 1014 eV, which is, obviously, not
possible because the energy of γ-ray could not exceed the energy of electron. This means that the
condition (2.120) in which the Eq. (2.122) is not satisfied for electrons of such high energy. Instead,
the inequality (2.120) is saturated already at the energy

Ee '
m2
e

εph
' 2.5× 1011

[ εph
1 eV

]−1
eV (2.137)

This is exactly the energy at which the maximum of the power of inverse Compton emission is reached,
see Fig. 2.7.

2.8.6 Inverse Compton scattering in Klein-Nishina regime

From Figure 2.7 one could find (within the considered model of electron spectrum) that the power of
inverse Compton energy loss gets suppressed in the regime when Ee � m2

e/εph, called Klein-Nishina
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regime of inverse Compton scattering. In this regime, each scattering event transfers a significant
fraction of electron energy to the photon so that Eγ ' Ee. The inverse Compton energy loss time
is then just the time between subsequent collisions of electron with photons, which is the interaction
time

tIC,KN =
1

σKNnph
' 106 yr

[
σKN
σT

]−1 [ nph
1 cm−3

]−1
yr (2.138)

It depends on the electron energy, because the cross-section of inverse Compton scattering in this
regime σKN is no longer constant.

The exact expression for the cross-section is derived from quantum mechanical treatment of the
scattering process. This could be understood after a transformation to the comoving reference frame
of electron. In this reference frame, the incident photon has an energy higher than the rest energy
of electron ε̃i = xme, x > 1. Its wavelength λ ' ε′−1

i is shorter or comparable to the Compton
wavelength of electron, λC = 1/me. This means that electron could not be considered anymore as a
classical particle influenced by an incident electromagnetic wave.

The quantum mechanical expression for the scattering cross-section is

σKN =
3σT
8x

{[
1− 2(x+ 1)

x2

]
ln(2x+ 1) +

1

2
+

4

x
− 1

2(2x+ 1)2

}
(2.139)

where x = ε̃i/me is the incident photon energy in the comoving frame expressed in units of electron
energy.

The above expression reduces to σT in the limit x� 1. Indeed, expanding the term in the brackets
in powers of x we find

{...} '
(

1− 2

x
− 2

x2

)(
2x− 2x2 +

8x3

3

)
+

1

2
+

4

x
− 1

2
(1− 4x) ' 8x

3
(2.140)

In the regime x� 1, the asymptotic behaviour of the cross-section is

σKN '
3σT

8

ln(2x)

x
(2.141)

The energy of the incident photon in the electron comoving frame is given by Eq. (2.115). It scales
as x = ε̃i/me ∼ εiEe/m

2
e with the electron energy. This means that the inverse Compton scattering

cross section in Klein-Nishina regime decreases with electron energy as

σKN ∼
ln(Ee)

Ee
(2.142)

in the limit of large Ee. This is consistent with the observation done in the previous section, based
on the interpretation of inverse Compton emission spectrum of the Crab nebula. Indeed, in the
Klein-Nishina regime the inverse Compton cooling time increases with energy as

tIC,KN ∼
1

σKN
∼ Ee

ln(Ee)
(2.143)

Thus, the inverse Compton cooling becomes less and less efficient and the power of inverse Compton
emission drops at the energies above the Klein-Nishina / Thomson regime transition energy.

Different dependence of the energy of photons on the energy of electrons (σ = 1 in terms of
the powerlaw scaling of Eq. (2.43) and of the cooling rate of electrons on their energy, dEe/dt ∼
Ee/tIC,KN ∼ ln(Ee), with γcool ' 0 in the notations of Eqs. (2.37), (2.39), lead to different slopes of
the spectra of emission from a broad band distribution of electrons and to a different effect of cooling
on the electron spectrum. From Eq. (2.37) we find that the low energy cooling tail below the energy
of injection of electrons E0 is very hard, with the slope dNe/dEe ∼ E0

e in this case. In the case of
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powerlaw injection spectrum, cooling via inverse Compton scattering in Klein-Nishina regime leads to
hardening, rather than softening of the electron spectrum, from the slope Γinj down to the slope with
index Γinj − 1. The spectrum of inverse Compton photons from a powerlaw distribution of electrons
has the same slope as the spectrum of electrons, Γ ' Γe.

One could also note that the energy of transition between the Thomson and Klein-Nishina regimes
of inverse Compton scattering is marked by a change in the slope of the photon spectrum from the
slope (Γe + 1)/2 to Γe.

2.9 Bethe-Heitler pair production

In the electron rest frame the transition between the Thomson and Klein-Nishina regimes of Compton
scattering takes place at the photon energy Eγ ' me. The change in the behaviour of Compton
scattering cross-section, from nearly constant value σ ' σT to a decreasing function of energy σ ∼
E−1 ln(E) could be seen in Fig. 2.11. On occasion, the figure shows the photon interaction cross-
section as a function of energy in silicon, but qualitatively similar picture is seen for any material.

Figure 2.13: Feynman diagrams. Left top: graph-
ical representation of the ”vertex” term for elec-
tromagnetic interactions. Right top: Feynman di-
agram of Compton scattering. Left bottom: the
diagram of the triplet production. Right bottom:
pair production on atomic nucleus (Bethe-Heitler).

Photon energy range Eγ ∼ me is remarkable
also from another point of view. As soon as
the energy of the incident photon reaches 2me,
the energy transfer in photon-matter collisions
becomes sufficient for production of electron-
positron pairs. This process is also characterised
by a scattering cross-section. The onset of the
pair production is seen in Fig. 2.11 as the new
(magenta) component of the cross-section ap-
pearing at the highest energies. This new cross-
section becomes larger than the Compton scat-
tering cross-section already at Eγ ∼ 10 MeV en-
ergies (the exact value depends on the material).

In principle, two different processes could
contribute to the pair production by a photon
propagating through matter. First, photon colli-
sion with an electron could lead to a conversion
of photon into a pair of electron and positron.
The formula of the reaction is then γ + e− →
e− + e+ + e− and the process is called ”triplet
production”, because there are three electron-like
particles at the outcome of reaction. This pro-
cess is intrinsically a quantum mechanical process
and its cross-section is calculated using quantum-

mechanical perturbation theory applied for photon-electron scattering (the conventional approach for
calculation of scattering amplitudes in Quantum Electrodynamics, QED). The small parameter of the
perturbative theory is the interaction strength, or compiling constant. In the case of QED it is the
square of particle electric charge. For electron interactions it is the fine structure constant α = e2.

In quantum mechanics the scattering cross-section is given by the square of the absolute value
of the scattering amplitude. This scattering amplitude is, in general, a sum of several terms in each
order of perturbation theory (terms proportional to some power of α). In QED the number of terms
entering the sum could be quite large. A convenient way of accounting of all the terms entering the
scattering amplitude in a given order of perturbative expansion was introduced by Feynman and is
known as ”Feynman diagrams” technique.

Each term of the scattering amplitude proportional to α is graphically represented as a vertex
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containing two electron ”legs” for incoming and scattered electron and one photon (or, more generally,
electromagnetic field) leg, as shown in Fig. 2.13. Diagrams in any order of the scattering amplitude
for any number of incoming and outgoing particles are composed of a number of vertexes joined by
the lines, or ”propagators” of free electrons and photons. Each vertex and each line correspond to
a particular multiplicative term in the expression for the scattering amplitude. Lines with two ends
attached to vertexes correspond to integrals over particle momenta, also present in expressions for the
scattering amplitude. The Feynman diagram technique provides an elegant way of encoding of bulky
formulae for the scattering amplitudes.

It also provides a qualitative insight into the judgement of relative importance of different interac-
tion ”channels”. For example, an event of electron-photon collision could have two different outcomes:
Compton scattering, in which the photon survives, but its momentum is changed and pair production,
in which the photon does not survive and instead an electron-positron pair is produced. It is not clear
a-priori, which process is expected to happen more often (i.e. to have larger scattering cross-section).

This becomes clear if one uses the technique of Feynaman diagrams. The diagram for the Compton
scattering process has the form shown in the middle of Fig. 2.13, while the diagram for the pair
production is on the right of this figure. Once could see that the Compton scattering diagram has
two electron-photon vertexes. Thus, it enters the scattering amplitude in the α2 order of perturbation
theory. To the contrary, the pair production diagram has three electron-photon vertexes. This means
that the contribution of this process into the electron-photon scattering amplitude enters the α3 terms.
Thus, the order of magnitude estimate of the scattering cross-section of the pair production is by a
factor of α =' 0.007 smaller than that of the Compton scattering. The pair production could start to
compete with Compton scattering only deep in the Klein-Nishina regime when the Compton scattering
cross-section significantly decreases.

Figure 2.14: Energy dependence of pho-
ton scattering cross-section in lead.

The pair production scattering cross-section close to the
threshold is further decreased because to the large recoil
energy of the target electron. Indeed, an incident photon
deposits its energy not only into the newly created electron-
positron pair, but also into the kinetic energy of the initially
existing electron. This reduces the amount of energy avail-
able for the pair. Once the available energy is below 2me,
the pair could no longer be created and the process gets
suppressed.

Second possibility for the pair production by a photon
propagating through matter is via interaction with protons
/ atomic nuclei. The high-energy photon could directly in-
teract with the Coulomb field of the nucleus, because its
wavelength is much shorter than the size of the atom. In
this way, the photon interacts separately with electron or
the nucleus, rather than with the entire atom. In the case of
scattering of photon on the nucleus the recoil energy of the
scattered nucleus is much less, because the nucleus is much
heavier than both electron and positron. The kinematics
of the scattering in this case is such that photon ”bounces”
from a proton / nucleus (almost) at rest and is converted
into an electron-positron pair. Neglecting the recoil of the
nucleus altogether, the process could be described as in-
teraction of photon with the Coulomb field of stationary

atomic nucleus.

The cross-section of the pair conversion in the Coulomb field was first calculated by Bethe and
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Heitler and is known as the Bethe-Heitler cross-section.

σNγ→Ne+e− '
28α3

9m2
e

r2
eZ(Z + 1) (2.144)

Figure 2.15: The principle of
γ-ray detection by pair conver-
sion telescope.

As expected, it is proportional to α3. It is much smaller than
the Thomson cross-section σT = (8π/3)(α/me)

2 in the case of scat-
tering on protons. However, in the case of scattering in ”high-Z”
material with the Z & 1/

√
α, the Z2 factor could compensate for the

suppression of the cross-section by α. Thus, in high-Z materials, the
pair production process starts to ”compete” with Compton scattering
already close to the threshold of the pair production. As an exam-
ple, Fig. 2.14 shows the energy dependence of the photon scattering
cross-section in the lead.

2.9.1 Example: pair conversion telescopes.

The dominance of the pair production over the Compton scattering
in the energy range above 10 MeV suggests that telescopes for obser-
vations in the energy band above 10 MeV should not be the Compton
telescopes (see section 2.7.5), but rather ”pair conversion” telescopes.
This is the basic idea behind the Fermi Space γ-ray telescope which is now operating in space1 and
the past EGRET telescope which was operational together with COMPTEL on board of Compton
Gamma-Ray Observatory satellite.

Figure 2.16: Fermi Large Area Telescope: a pair
conversion telescope currently operating in orbit.
Tracker layers and the calorimeter could be seen in
the open part of the telescope box surrounded by an
”anti-coincidence” shield rejecting charged cosmic
rays which hit the telescope in space.

The principle of operation of a pair conver-
sion telescope is shown in Fig. 2.15. γ-ray pene-
trating into the detector volume is converted into
electron-positron pair in a high-Z medium. The
trajectory of electron and positron is recorded by
a tracker, which registers several reference points
of passage of the charged particle. In the pho-
ton energy range Eγ � me the electron and
positron are highly relativistic with the energy
Ee+,e− ' Eγ/2� me. The kinematics of the pair
production reaction is such that the direction of
motions of electron and positron is aligned with
the direction of motion of initial γ-ray to within
an angle θ ∼ Ee+,e−/me � 1. Thus, measur-
ing the direction of motion of the electron and
positron, one obtains the information on the ar-
rival direction of the initial γ-ray.

The sum of energies of electron and positron
is equal to the energy of the γ-ray. Measuring the
energies of electron and positron with the help of
a calorimeter one finds the energy of the γ-ray.

Several pair conversion telescopes are currently operating in orbit: Fermi Large Area Telescope
(LAT) and AGILE. Fig. 2.16 shows an image of the Fermi/LAT telescope, with the tracker layer clearly
seen in the cross-section. Below the tracker layers one could see the thick plate of the calorimeter.
The overall dimensions of the telescope are about 1 m × 1 m. It could detect photons with energies
up to ∼ 1 TeV. Detection of photons of higher energies is limited by two factors. First, high-energy

1http://fermi.gsfc.nasa.gov/ssc/
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particle showers developing in the calorimeter start to ”leak” from the bottom, so that the shower is
not entirely contained in the calorimeter. In this case the calorimeter provides only the measurement
of the part of the initial photon energy dissipated in the calorimeter, and not the real shower photon
energy.

Another problem is that at TeV energies the flux of photons from astronomical sources becomes
very low. To judge how low could be the flux, it is useful to consider Crab nebula, which is one of
the brightest γ-ray sources on the sky. Fig. 2.7 shows that the flux of the source in the TeV range
is εFε,Crab ' 3 × 10−11 erg/cm2 s. Each TeV γ-ray carries about 1 erg of energy, so that the flux is
Fε,Crab ' 3 × 10−11 photons/(cm2 s). A telescope with collection area 1 m × 1 m= 104 cm2 counts
the source photons at the rate R ∼ 3 × 10−7 s which corresponds to approximately one photon per
month. Several years of observations are needed to collect the signal containing tens of photons, which
is needed for a sensible spectral analysis.

2.10 Gamma-gamma pair production.

A quick look at the diagrams shown in Fig. 2.13 gives an idea for another possible type of pair
production process, which occurs in α2, rather than α3 order of perturbation theory and, therefore,
has a larger cross-section. Indeed, looking at the diagram of Compton scattering, one sees that it
describes an interaction which involves two photons and two electrons / positrons. Up to now we have
considered the collisions between electrons and photons, with one incoming and one outgoing electron
/ photon.

The same diagram appears in the calculations of scattering amplitudes of two other processes. The
collisions of electrons and positrons might result in disappearance of both particles and appearance
of two photons. The process is called annihilation. In this case the diagram has the form shown
on the left in Fig. 2.28. Alternatively, in an inverse process, collision of two photons might result
in production of an electron positron pair. Counting the vertexes of the diagram we find that these
processes occur in the sam order of perturbation theory in α, so their cross-sections are comparable
to the Thomson cross-section.

Figure 2.17: Feynman diagrams for annihilation
(left) and production of pairs (right).

Pair production on photon-photon collisions
is possible only if the center-of-mass energy is
higher than two times the rest energy of elec-
tron. The energy threshold of the reaction could
be found from the four-momentum conserva-
tion law. We introduce the notations P γ1,2 =
(ε1,2, ~p1,2) for the four-momenta of the two incom-
ing photons in the lab frame and P̃ γ1,2 = (ε̃,±p̃)
for their momenta in the center-of-mass frame.
We calculate the four-scalar

P γ1P γ2 = ε1ε2(1− cos θ) = 2ε̃2 (2.145)

in the lab frame and in the centre of mass frame (θ is the angle between the directions of the two
photons). The outcome of the collision in the venter-of-mass frame are electron and positron at rest.
The product of their four momenta is just 2m2

e. Equating this to P γ1P γ2 we find that the pair
production reaction is possible if

εγ1εγ2 >
2me

(1− cos θ)
≥ m2

e (2.146)

A typical example of gamma-gamma pair production in the astrophysical conditions is of a source
emitting high-energy γ-rays which, before escaping from the source have to propgate through a soft



46 CHAPTER 2. RADIATIVE PROCESSES

photon background. Taking the γ-ray energy Eγ and the typical soft photon energy ε, we find that
the source potentially becomes opaque to γ-rays with energies higher than

Eγ ' 250
[ ε

1 eV

]−1
GeV (2.147)

Figure 2.18: Comparison of the cross-
sections of inverse Compton scattering
(ICS), triplet production (TPP) and γγ
pair production (PP) as functions of the
square of the centre-of-mass energy s.
Also shown in the cross-section of double
pair production (DPP). Solid lines show
the cross-sections, dashed lines show
cross-sections times the elasticity (aver-
age fractional energy loss of electron in
single collision). From Ref. [17].

At the energies higher than the threshold, electron and
positron move with typical energies meγ ' ε̃ and velocities

v '

√
1− m2

e

ε1ε2
(2.148)

(we take a typical collision angle of 90 degrees, assuming
that γ-rays propagate through isotropic soft photon back-
ground). Quantum mechanical calculation gives the expres-
sion for the cross-section of the process

σγγ(v) =
πr2

e

2
(1− v2)

[
2v(v2 − 2) + (3− v4) ln

(
1 + v

1− v

)]
(2.149)

It is useful to compare this cross-section with the cross-
section of Compton scattering. Close to the threshold, in
the limit v → 0, we find

σγγ ' πr2
ev (2.150)

It reaches ' πr2
e ' 3

8σT ' 1.5×10−25 cm2 at the maximum.
At large v → 1, the limit is

σγγ '
πr2

em
2
e

Eγε
ln

(
Eγε

m2
e

)
(2.151)

i.e. it decreases as E lnE, similarly to the Compton cross-
section in Klein-Nishina regime.

A comparison of the energy dependences of the cross-
sections of inverse Compton scattering, γγ pair production
and triplet production is shown in Fig. 2.18.

2.10.1 Example: pair production opacity of
high-energy sources and of the Universe

The relation between the cross-sections of Compton scat-
tering and pair production has an important implication
for the physics of high-energy sources. We remember that
many sources (including all the stars) are opaque with re-
spect to the Compton scattering (i.e. the mean free path
of photons λ = (σTne)

−1 is much shorter than the size of
the source R and the optical depth τ = R/λ� 1.

This means automatically that the same sources are
opaque also to γ-rays with energies in excess of the pair
production threshold (2.147). Indeed, the cross-section of
the pair production σγγ ∼ 0.1σT .

The most famous example of a pair production thick
source is given by the Gamma-Ray Bursts (GRB). These are γ-ray sources which occur for short
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periods of time (0.1 − 103 s at the moment of supernova explosions). The luminosity of the sources
reaches Lγ ' 1050 erg/s, in the soft γ-ray band Eγ ' 1 MeV. The relation of the source to the star
with gravitationally collapsing core suggests an estimate of the source size R ∼ 106 cm, of the order
of the gravitational radius of the star Rg = GN (10M�) ' 106 cm. If we calculate the optical depth of
the source with respect to the pair production by the MeV γ-rays on themselves (ε ∼ Eγ ∼ 1 MeV),
we find

τ =
R

λγγ
' Lγσγγ

4πRε
(2.152)

we would find a value in the range of 1014. This implies that the MeV γ-rays should not escape from
the source at all. We will see later on in the course (when considering the GRB phenomenon) how
this difficulty in source modelling is overcome. This pair production opacity problem is encountered
in a milder form in a number of other high-energy source types, like e.g. active Galactic Nuclei.

Figure 2.19: Comparison of the energy-
dependent mean free path of γ-rays with
the distances to the known TeV γ-ray
sources.

Another common example of a source opaque w.r.t.
the pair production is the Universe itself. Indeed, the
Universe is filled with radiation fields (the CMB, the in-
terstellar radiation field in our Galaxy, the Extragalac-
tic Background Light, which is the infrared radiation field
collectively produced by all the galaxies in the course of
cosmological evolution). The energy of CMB photons is
ε ' 10−3 eV. This means that γ-rays with energies higher
than Eγ ' 0.3 PeV (see eq. (2.147)) could produce pairs in
interactions with CMB photons. The density of the CMB
photons is nCMB ' 400 cm−3. The mean free path of the
γ-ray s w.r.t. the pair production is, therefore,

λγγ =
1

σγγnCMB
' 8 kpc (2.153)

Thus, PeV γ-rays are even not able to escape from the host
galaxy of the source (typical galaxy sizes are 10-100 kpc).

Otherwise, lower energy TeV γ-rays could efficiently
produce pairs in interactions with the EBL photons of the
energies ε ' 1 eV. The density of the EBL is much lower

and the mean free path of photons w.r.t. this process is respectively larger. Still it is shorter than the
typical distance to the extragalactic sources of TeV γ-rays. Comparison of the γ-ray mean free path
with the distances to the known TeV sources is shown in Fig. 2.19.

2.10.2 Electromagnetic cascades

Figure 2.20: Model of electromagnetic cascade.

The pair production con-
verts high-energy γ-rays into
electrons and positrons of
comparable energies. The
inverse Compton scatter-
ing process re-generates the
high-energy γ-rays by trans-
ferring the energy of elec-
trons / positrons to the low-
energy photons. In this way,
a cyclical process of ”bounc-
ing” of the energy between
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electrons / positrons and γ-rays could take place. This process also leads to multiplication of the
number of high-energy particles, because each pair production event generates two high-energy parti-
cles (electron and positron) of of one high-energy γ-ray.

This process is called electromagnetic ”cascade”. It is important in the context of several astro-
physical situations, in particular, in the interiors of some high-energy sources.

A simple phenomenological description of the cascade is shown in Fig. 2.20. The mean free path
of photons w.r.t. the pair production is comparable to that of electron / positron w.r.t. the inverse
Compton scattering (in Klein-Nishina regime). After propagating approximately one mean free path
distance, the γ-ray of energy E0 disappears and transfers energy to electron and positron in roughly
equal proportions, so that the energies of both particles are Ee,1 ∼ E0/2. Inverse Compton scattering
in the Klein-Nishina regime converts most of the electron /positron energy back into γ-ray energy, so
that the energy of the ”first generation” γ-rays are Eγ,1 ' E0/2. The process of division of energy
between new particles repeats in the ”second generation of the cascade. After n generations, the
typical energy of the cascade particles is

Ee,n ' Eγ,n '
E0

2n
(2.154)

The number of particles in the cascade is
Nn ' 2n (2.155)

The process of energy division repeats until the energies of particles decrease below the pair produc-
tion threshold. If the highers energy γ-rays are continuously injected in the source, an equilibrium
distribution forms with time. In this equilibrium distribution the spectrum of cascade particles is

N(E) ∼ (E/E0)−1 (2.156)

which implies a dN/dE ∼ E−2 type (again!) differential spectrum.

2.11 Bremsstrahlung

Up to now we have concentrated on the radiative losses of electrons due to the interactions with
magnetic field (synchrotron) and radiation fields (inverse Compton). High-energy electrons also suffer
from energy losses when they propagate through matter and interact with the electrostatic Coulomb
field of atomic nuclei. There are two energy loss channels: radiative one, called Bremsstrahlung, and
non-radiative one, called ionisation loss.

The radiative energy loss is related to the accelerated motion of electron which is deviated by
the Coulomb field of an atomic nucleus. The power of radiation is given by the conventional Larmor
formula dE/dt = (2/3)|p̈|2, where ~p = e~r is the dipole moment. If we consider spectral decomposition
of the power, we use the formula

dE
dω

=
8π

3
ω4|p̂(ω)|2 (2.157)

where p̂(ω) is the Fourier transform of the dipole moment.
Considering the geometry and physics of scattering of electron in the Coulomb field of the nucleus

(see Fig. 2.21), we know that the scattering takes place on the time scale τ ' b/v where b is the ”shoot-
ing parameter” and v is velocity of the particle. This implies that the spectrum of Bremsstrahlung
extends up to the frequency ω ∼ 2π/τ ' 2πv/b. Numerically,

ω2~̂p(ω) =
e

2π

∫ ∞
−∞

~̈reiωtdt =
e

2π

∫ ∞
−∞

~̇veiωtdt (2.158)

The expression under the integral is strongly oscillating in the limit ω → ∞, so that the integral is
indeed approximately zero. In the limit ω � 2πv/b, the exponential term in the integral stays roughly
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constant on the time scale t ∼ τ , so that we could in the first approximation substitute this term with
1. This gives

ω2~̂p(ω) '
{

e
2π

∫
v̇dt = (e/2π)∆v, ω � 2πv/b;

0, ω � 2πv/b.
(2.159)

where ∆v is the overall change of velocity in the scattering event.

This overall velocity change could be found from the dynamics of scattering. The second law of
Newton reads

me~̇v = −e ~E (2.160)

where ~E is the electric field of the atomic nucleus with the charge Ze, ~E = Ze2~r/r3. In the first ap-
proximation, we could assume that electron moves along a straight line before and after the scattering
event at the moment t = 0, so that the distance between the electron and the nucleus changes in time
as

r(t) =
√
b2 + v2t2 (2.161)

Besides, we could consider only the acceleration component normal to the electron velocity, taking
into account only one component of the electric field. This gives for ∆v

∆v =

∫ ∞
−∞

v̇dt =
2Ze2

me

∫ ∞
0

bdt

(b2 + v2t2)3/2
=

Ze2

mebv
(2.162)

Substituting the above expressions into the expression for the radiated power we find

dE
dω

=

 2e2

3π
4Z2e4

m2
eb

2v2 , ω � 2πv/b;

0, ω � 2πv/b
(2.163)

We notice that the power of radiation scales with the square of the charge of the nucleus. The power
is higher for close encounters (smaller b) and slow electrons (smaller v).

Figure 2.21: Geometry of scattering of
electron on an atomic nucleus.

A typical situation is when electron propagates through
a medium. The rate of encounters with different b is deter-
mined by the density of the medium. The total energy of
Bremsstrahlung emission after the path length H = vt is
then found as an integral over b

dEtot
dω

=

∫
dE
dω

2πnHb db (2.164)

wheree n is the density of the medium. The explicit ex-
pression is

dEtot
dω dt

=
16

3

Z2e6n

m2
ev

∫
db

b
=

16

3

Z2e6n

m2
ev

ln

(
bmax
bmin

)
=

16πZ2e6n

3
√

3m2
ev

gff (v, ω)

(2.165)
where bmin, bmax are the minimal and maximal values of the shooting parameter, which are rather
difficult to estimate. A way around this difficulty is to introduce the so-called Gantt factor

gff (v, ω) =

√
3

π
ln

(
bmax
bmin

)
(2.166)

This phenomenological factor gff ∼ 1 is tabulated for different materials. The ff subscript is for
”free-free” emission, another name for Bremsstrahlung in English.
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Qualitatively, the maximal and minimal values of the shooting parameter are readily understood.
For very slow particles, the minimal possible value is determined by the quantum mechanical extent
of the electron wave function, which is estimated form the uncertainty relation

∆p∆x ' me∆vbmin ∼ 1 (2.167)

which gives bmin ∼ (mev)−1, about the deBroglie wavelength. Otherwise, the distance of closest
approach of the fast particles is estimated from the relation

mev
2

2
∼ Ze2

bmin
(2.168)

which gives bmin ∼ Ze2/mev
2. The real value of bmin is the smaller of the two estimates.

The maximal value bmax at which the Bremsstrahlung emission is contributing to the power at
a frequency ω is estimated from the relation ω < 2πv/bmax, which gives an estimate bmax ∼ 2πv/ω.
Of course, the maximal value of b could not be smaller than the minimal, which imposes an evident
restriction on ω

ω < mv2
e ∼ Ee (2.169)

i.e. the energy of the Bremsstrahlung photons could not exceed the energy of the parent electron.

Inspecting the Eq. 2.165 we notice that the power of Bremsstrahlng emission scales with the energy
of electron as

dE
dt
' ω dE

dωdt
∼ v ∼ E1/2

e (2.170)

in the case of non-relativistic electrons considered so far.

Figure 2.22: X-ray image of Coma galaxy
cluster

The expression for the Bremsstrahlung spectrum in the
relativistic case is similar to the non-relativistic expression:

dE
dωdt

' Z2e6n

m2
ev

ln

(
192v

Z1/3

)
(2.171)

However, the same formula implies a different scaling of the
Bremsstrahlung power with the election energy:

dE
dt
' ω dE

dωdt
' Z2e6nEe

m2
e

∼ Ee (2.172)

This implies that the Bremsstrahlung cooling time

tbrems =
Ee

dEe/dt
' m2

e

Z2e6n
=

1

σbremsn
(2.173)

is roughly energy independent for relativistic particles.
We have introduced in the last equation the cross-section
σbrems ' Z2e6/m2

e One could notice that this cross-section
is

σbrems ∼ 10−2Z2σT (2.174)

similarly to the cross-section of Bethe-Heitler pair production.
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2.11.1 Example: thermal Bremsstrahlung X-rays from galaxy clusters

The Bremsstrahlung emission is responsible for the X-ray flux from galaxy clusters. Gas which falls in
the gravitational potential well of the clusters with mass M ∼ 1015M� heats liberates its gravitational
potnetial energy which is converted in the energy of the random motions of particles or, in other words
into heat. The temperature of the gas could be estimated from the virial theorem

T ∼ mv2

2
∼ GMmp

R
∼ 10 keV

[
M

1015M�

] [
R

1 Mpc

]−1

(2.175)

Gas heated to this temperature emits Bremsstrahlung photons with energies comparable to the energies
of electrons in the gas, see Fig. 2.22 for an example of X-ray Bremmstrahlung emission from Coma
galaxy cluster. .

Density of the gas in the cluster is n ∼ 0.05M/R3 ∼ 10−3 cm−3. The Bremsstrahlung cooling time

E

dE/dt
' 3m

3/2
e T 1/2

16πZ2e6n
∼ 1010

[ n

10−3 cm−3

]−1
[

T

10 keV

]1/2

yr (2.176)

This time is comparable to the age of the Universe, so that the hot gas residing in the clusters is about
to cool down at the present epoch of evolution of the Universe. Gas cooling is expected to produce a
”cooling flow” with decreasing temperature and increasing density in the center of the clusters. The
increase of the density and decrease of temperature speed up the coouling so that the cold gas should
quickly accumulate in the cluster core.

This cooling flow process is most of the time counteracted by the activity of the centerl galaxy of
the cluster which produces relativistic outflows displacing the cooling flow and heating the intracluster
medium.

2.12 Ionisation losses

The energy loss of electron scattering on an atomic nucleus is not limited to the radiative Bremsstrahlung
loss. Another energy loss channel is the kinetic energy of nucleus recoil. We could estimate the mo-
mentum which the nucleus gets in a single scattering event via a calculation similar to that done for
the estimation of electrons ∆v in the previous section. We approximate the motion of electron as a
straight line before and after the scattering event at the moment t = 0 and write the expression for
the electrostatic force acting on the nucleus

F⊥ =
Ze2b

r3
(2.177)

(we take into account only the component normal to the electron velocity). The work done by the
force is the change of momentum of the nucleus

∆p = 2

∫ ∞
0

F⊥dt =

∫
F⊥

bdθ

sin2 θ
=
Ze2

bv

∫ π

0
sin θ dθ =

2Ze2

bv
(2.178)

using the notation for the angle θ introduced in Fig. 2.21.
The momentum conservation law tells that the momentum gained by the nucleus is equal to the

momentum lost by the electron. The electron energy loss associated to the exchange of momentum
between the electron and the nucleus is

∆Ee =
∆p2

2me
=

2Z2e4

meb2v2
(2.179)
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Figure 2.23: The rate of ionisation loss as a function
of momentum of high-energy particle

Electron propagating through a medium in-
teracts with many nuclei at different shooting pa-
rameters b. The overall energy transferred to the
nuclei per path length dx is

dEe
dx

=

∫
2πnb db

2Z2e4

meb2v2
=

4πZ2e4n

mev2
ln

(
bmax
bmin

)
(2.180)

and expression similar to that for the Bremsstrahlung
energy loss. A more general relativistic expres-
sion for the ionisation loss is given by the Bethe-
Bloch formula

dEe
dx

=
4πZ2e4n

mev2

[
ln

(
2γ2mev

2

I

)
− v2

]
(2.181)

where I is the ionisation energy of the atoms com-
posing the medium. Taking a medium with the
density water, n ' 1024 cm−3, we could estimate
the energy loss as

dEe
dx
' (several) MeV/cm (2.182)

for a mildly relativistic electron (v ∼ 1, γ ∼ 1).
The energy dependence of ionisation loss has a
pronounced minimum at vγ ' 3, see Fig. 2.23.
Particles of this energy are called ”minimum ion-

ising particles” in particle physics.
It is interesting to note that the ionisation loss calculation which we’ve done for the electron

”pulling” the heavy atomic nuclei could be re-used to calculate the energy loss of a heavy particle
(e.g. an atomic nucleus, but could also be muon, pion etc.) propagating through a medium filled
with electrons. In this case, trajectory of the heavy particle is almost not deviated, but electrons in
the medium gain momentum when the particle passes next to them. The momentum gain of each
electron is still given by Eq. (2.178) and the overall energy loss of the heavy particle is still given
by Eq. (2.180). Thus, it appears that any particle propagating through the medium experiences
approximately the same energy loss at a given velocity. This is illustrated in Fig. 2.23 where the X
axis shows not only the momenta of different particles.

A proton of the energy 1 GeV looses ' 2 MeV/cm on the Coulomb / ionisation loss while propagat-
ing through the medium, i.e. the same amount of energy as an electron of the energy 0.5 MeV. Because
of this fact, heavy particles have much higher ”penetrating power”. A proton of the energy 1 GeV
would loose a significant fraction of its energy on ionisation after ' 1 GeV/(2 MeV/cm) ' 500 cm,
while electron would loose all its energy within ' 0.5 MeV/(2 MeV/cm) ' 0.25 cm distance.

The ionisation energy loss rate of relativistic particles grows only logarithmically with energy. This
means that the ionisation loss time

tion =
Ee

dEe/dt
∼ Ee

ln(Ee)
(2.183)

becomes longer with the increasing energy. Comparing the ionisation and Bremsstrahlung energy loss
times we find

tion
tbrems

' Z2e6nEe
m2
ev

mev
2

Z2e4n
∼ e2Ee

me
(2.184)

we find that as soon as the gamma-factor of electron Ee/me reaches 1/e2 ∼ 100, the Bremsstrahlung
energy loss starts to dominate over the ionisation energy loss.
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2.12.1 Example: extensive air showers in the atmosphere.

Figure 2.24: Principle of observation of EAS ini-
tiated by γ-rays and cosmic rays by the imaging
atmospheric Cherenkov telescopes.

We have considered in Section 2.10.2 the phe-
nomenon of electromagnetic cascade taking place
during propagation of γ-rays and electrons
through a photon gas. A similar cascade phe-
nomenon also accompanies propagation of high-
energy particles through a medium.

One particularly interesting example is that
of particle cascades in the atmosphere, called
”Extensive Air Showers”. A high-energy γ-ray
(or any other high-energy particle hitting the at-
mosphere) will interact with atoms (electrons,
nucleons). The main interaction channel for the
γ-rays with energies above MeV is the Bethe-
Heitler pair production. The cross-section of the
pair production is σBH ∼ Z2e6/m2

e and the mean
free path of the γ-ray through the air is

λγ =
1

σBHnair
' 105 cm (2.185)

, (nair ' 1021 cm−3 is the density of the atmo-
sphere). It is much shorter than the scale height of the atmosphere, Hair ∼ 10 km. Thus, high-energy
photons do not reach the ground level and are, instead, converted into electron-positron pairs.

Electrons and positrons with energies above ∼ 100 MeV loose energy mostly via Bremsstrahlung
emission. The energy of the Bremmstrahlung photons reaches that of electrons. The cross-section of
the Bremsstrahlung is comparable to that of the pair production. Thus, after one more λγ distance
all the energy of electrons and positrons is converted back into γ-rays, although with energies lower
than that of the initial γ-ray. The whole process of conversion of energy between γ-rays and electrons
/ positrons repeats again. In this way an electromagnetic cascade similar to that described in Section
2.10.2 develops until the energies of electrons and photons reach the critical energy at which the
Bremsstrahlung energy loss becomes sub-dominant compared to the ionisation energy loss (Ee,crtit '
100 MeV). As soon as the energy drops below the critical energy, particle number multiplication in
the cascade stops because most of the energy is lost in a non-radiative way on the ionisation.

The maximal number of particles in the EAS could be estimated as Nmax ' E0/Ecrit where E0

is the energy of the primary particle which initiated the cascade. This maximum is reached after
n ' ln(E0/Ecrit) generations of cascade at the atmospheric depth nλγ .

The EAS initiated by high-energy particles penetrating into the atmosphere could be observed
using several complementary techniques. One possibility is to observe blue-violet Cherenkov emission
produced by particles moving with the speed faster than the speed of light in the atmosphere. This
emission is concentrated in a narrow cone with an opening angle αCh = arccos(1/nair) ' 1◦, where nair
is the refraction coefficient of the air. The overall intensity of emission from a shower is proportional
to the number of charged particles in the EAS and, therefore, to the energy of the primary particle.
Imaging the blue-UV trace of the EAS in the atmosphere one could measure the arrival direction of
the primary particle.

This technique is used for the observations of γ-rays with energies in the 0.1-10 TeV range using
Imaging Atmospheric Cherenkov Telescopes (IACT), see Fig. 2.24. These telescopes are large optical
reflectors with mirror areas in the 100 m2 range, to collect sufficiently strong signal from the EAS.
The focal plane of the reflectors is equipped with cameras taking images of the sky on the (tens of)
nano-second time scale, characteristic for the duration of of Cherenkov signal. IACTs are conven-
tionally arranged in arrays of several units, to allow stereo-vision technique for the reconstruction of
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3d geometry of the EAS in the atmosphere. An example of a telescope belonging to an IACT array
MAGIC is shown in Fig. 1.7.

Figure 2.25: Principle of observation of EAS by the
air fluorescence telescopes and surface Air Shower
Arrays.

Another possibility for the observations of the
EAS is to detect the fluorescence light produced
by the de-excitations of the air molecules excited
by the EAS. If the medium through which the
high-energy particles propagate consists of atoms
and molecules, transfer of energy to the electrons
and nuclei of the medium finally leads to the ex-
citation of the atoms and molecules containing
these electrons and nuclei. De-excitation of the
N2 molecules in the air produces blue fluores-
cence light which could be observed during the
period of EAS development in the atmosphere
(the typical time span is H/c ' 30 µs). The
fluorescence signal is produced along the EAS
track in the atmosphere. Using the stereo vision
technique, one could reconstruct the arrival dira-
tion of the primary high-energy particles from the
track signal in different ”air fluorescence” tele-

scopes, as it is shown in Fig. 2.25. This observational principle is realised in experiments studying
the highest energy cosmic rays (particle energies above ∼ 1018 eV), such as Pierre Auger Observatory
and Telescope Array experiments.

Still another possible way of detection the EAS is via deployment of a large grid of particle detectors
on the ground, as it is shown in Fig. 2.25. The EAS particles reaching the ground level produce
signal in many detectors simultaneously. Measurement of the delays between the arrival times of the
EAS signal in different detectors provides a possibility to measure the arrival direction of the EAS.
Measurement of the overall strength of the signal provides an estimate of the energy of the primary
particle which has initiated the EAS. Numerous EAS surface arrays are deployed around the world
for observations of cosmic rays and γ-rays with energies above ∼ 1 TeV up to the ultra-high-energy
cosmic ray energy range, ∼ 1020 eV.

2.13 Interactions of high-energy protons

Up to now we have (almost) neglected radiative energy losses of protons and atomic nuclei. The
reason for this is that in most of the cases the energy losses scale inversely proportional to a power of
the particle mass and, as a consequence, they are much smaller for heavy protons than for the light
electrons. We have seen this on example of the synchrotron radiation.

However, there are several cases when the radiative energy losses of high-energy protons and atomic
nuclei are important in the astrophysical context. In this section we will go through the radiative losses
of protons and nuclei.

2.13.1 Synchrotron, Compton etc losses for protons

In general, all the ”classical radiative energy losses which we considered so far are different manifesta-
tions of dipole radiation of accelerated particles. The Larmor formula for the dipole radiation power
is

P =
2e2

3
γ4a2
⊥ (2.186)
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From this expression it is clear that particles accelerated in a similar way emit comparable power if
their gamma factors are comparable. Thus, if we compare the energy loss of electrons and protons of
the same energy, the energy loss of protons will be suppressed, because their gamma factor is by a
factor of mp/me ∼ 2× 103 lower.

This applies for all the main classical radiative losses, including curvature, synchrotron, inverse
Compton and Bremsstrahlung radiation. Nevertheless, the energy losses of extremely energetic protons
with large gamma factors could be important in some astrophysical conditions as e.g. discussed in
section 2.6.2.

2.13.2 Pair production

Energy losses for protons are more important for the quantum processes of production of new particles.
The first example is given by the process of pair production in interactions of high-energy protons
with low energy photon background. This process is essentially the same as the Bethe-Heitler pair
production by γ-rays propagating through a medium.

Consider an interaction of proton with the four-momentum P p = (mpγ,mpγ~v) with a low energy
photon with four-momentum P γ = (ε, ~p). Let us make a Lorentz transformation to the frame comoving

with the proton. In this frame the four-momentum of proton is P̃ p = (mp, 0), and photon momentum

is P̃ γ = (ε̃, p̃). We take the product

mpγε(1− v cos θ) = P pP γ = P̃ pP̃ γ = mpε̃ (2.187)

where θ is the collision angle in the lab frame. Neglecting the recoil of the proton in the comoving
frame, the condition for the possibility of the pair production is that the energy of photon should be
higher than the rest energy of the pair, ε̃ > 2me. This imposes a restriction

Epε =
mpε̃

1− cos θ
>

2mpme

1− cos θ
> mpme (2.188)

for the threshold of the reaction. For example, protons propagating through a gas of photons from
the starlight, ε ∼ 1 start to produce pairs if their energy is higher than

Ep,thr =
mpme

ε
' 5× 1014

[ ε

1 eV

]−1
eV (2.189)

The cross-section of the pair production process is the Bethe-Heitler cross-section,

σpγ→pe+e− '
56

9
αr2

e ' 4× 10−27 cm2 (2.190)

In spite of the sizeable cross-section, the efficiency of the pair production as proton energy loss in
astrophysical conditions is usually very low. This is because of the small ”inelasticity” of the process.
The proton looses only a small fraction of its energy in each pair production event. Indeed, consider
the pair production near the threshold. In the reference system comoving with the proton, both the
proton and the newly produced electron and positron are almost at rest. Their energies are mp and
me, respectively. Transforming to the lab frame, both the proton and the election energy is boosted
by the proton gamma factor, to mpγ and meγ, respectively. This means that the electron and positron
carry away only a small fraction, κ = 2me/mp ' 10−3 of the proton energy. A significant decrease of
the proton energy could happen only after ∼ 103 pair production events.

A reference example of marginally important pair production by protons is given by the effect of
interactions of high-energy cosmic ray protons with the CMB photons. The threshold energy for this
process is Ep,thr ' 1018 eV. The density of CMB is nCMB ' 400 ph/cm3. Proton mean free path
w.r.t. the pair production is

λpγ→pe+e− =
1

σpγ→pe+e−nCMB
' 1024 cm ' 0.3 Mpc (2.191)
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The energy loss distance is much larger,

lpγ→pe+e− = κ−1λpγ→pe+e− ' 300 Mpc (2.192)

This corresponds to the energy loss time t = lpγ→pe+e− ' 1 Gyr, just an order of magnitude below
the age of the Universe.

The pair production on CMB might have a small effect on the spectrum of cosmic rays, by slightly
suppressing the flux of cosmic rays of the energy 1018 eV which interact with CMB most efficiently
and transfer part of their energy to the pairs.

2.13.3 Pion production and associated electromagnetic emission

Figure 2.26: Cross-section of pion production in pγ
collisions.

A more efficient energy loss of protons is via
production of heavier particles, e.g. pions. Pi-
ons are two-quark particles with masses in the
mπ ' 100 MeV range, i.e. two orders of magni-
tude higher than electron. Repeating the calcu-
lation which led to the estimate inelasticity, we
find that in the case of the pion production the
inelasticity κ ' mπ/mp ' 0.1 is much higher.
This means that proton looses a significant frac-
tion of its energy in just several collisions.

The threshold for this reaction could be also
found from the kinematics considerations. Intro-
ducing, as before, the proton and photon four-
momena and transforming to the center-of-mass
frame where P̃ p = (ẼP , ~̃pp) and P̃ γ = (ε̃, ~̃pp), we
could write an expression for the absolute value
of the total four-momentum before and after the
reaction p+ γ → p(n) + π. This gives(
P p + P γ

)2
= m2

p + 2mpγε(1− v cos θ) (2.193)

before the reaction (in the lab frame) and(
P̃ p + P̃ π

)2
= m2

p + 2mpmπ +m2
π (2.194)

after the reaction (the expression is in the center-of mass frame and both proton and pion are at rest
after the reaction). Equating the two expressions for the conserved quantity we find the condition for
the possibility of the pion production Ep > Ep,thr,

Ep,thr =
mpmπ(1 +mπ/(2mp))

2ε
' 1017

[ ε

1 eV

]−1
eV (2.195)

The cross-section of this process is determined by the physics of strong interactions. Close to the
threshold is is as large as σpγ ' 6× 10−28 cm and drops to ' 10−28 cm much above the threshold, see
Fig. 2.26.

The inelasticity of the pion production collisions is higher than that of the electron-positron pair
production, The fraction of energy lost by proton in each collision is κ ∼ 10−1 rather than ∼ 10−3.

Example: GZK cutoff in the spectrum of cosmic rays
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Figure 2.27: Spectrum of cosmic rays [18].

If we consider again the example of cosmic rays
interacting with the CMB photons, we find that
the mean free path and the energy loss with re-
spect to the pion production reaction are, respec-
tively, longer and shorter, compared to the pair
production

λpγ =
1

σpγnCMB
' 1− 10 Mpc (2.196)

and the energy loss distance

lpγ = κ−1λpγ ' 10− 100 Mpc (2.197)

The pion production loss has, therefore, stronger
effect on the cosmic rays spectrum, significantly
suppressing the flux of cosmic rays with energies
Ep > Ep,thr ' 1020

[
ε/10−3 eV

]−1
eV. This is the

domain of Ultra-High-Energy Cosmic Rays (UHECR), the highest energy particles ever detected. The
interactions with the CMB suppress the flux of cosmic rays above the threshold of the pair production.
This effect is know Greisen-Zatsepin-Kuzmin (GZK) cut-off.

The GZK cut-off is possibly observed in the spectrum of UHECR, see Fig. 2.27. This cut-off
is expected to appear as a suppression of the cosmic rays flux at the energies above 1020 eV. Such
suppression is clearly seen in the data as a deviation from the powerlaw extrapolation of the spectrum
from the energy band ∼ 1019 eV.

There is, however, no unambiguous interpretation of the observed suppression of the flux as the
GZK cut-off. It is possible, in principle, that the suppression is due to the absence of astronomical
sources capable to accelerate particles to the energies higher than ∼ 1020 eV. To identify the flux
suppression with the GZK effect on the cosmic ray spectrum, one would need to detect the sources
of UHECR and measure their individual spectra. If the high-energy flux suppression is due to the
GZK effect, one would find that the UHECR flux from sources at the distances beyond 10-100 Mpc
get gradually suppressed with the increasing distance to the source.

Detection of the sources of UHECR is difficult because of the low statistics of the signal. In fact,
the errorbars at the highest energies in Fig. 2.27 are statistical: one just runs out os statistics above
1020 eV. Reading from the ”y” axis of the figure, we see that the UHECR flux is ' 10−11/(km2 s sr).
To detect a single UHECR of the energy 1020 eV, one needs an exposure time of one year (3× 107 s)
for the collection area of 3000 km.

This is the collection area of existing UHECR experiments, like Pierre Auger Observatory and Tele-
scope Array. These experiments detect cosmic rays using a ”hybrid” detection technique of extensive
air showers, as shown in Fig. 2.25. Charged particles of the shower reaching the ground are detected
by a network of detectors on the ground (on occasion, in Fig. 2.25 the detectors are scintillator pads).
Fluorescence emission of nitrogen molecules excited along the path of the shower is detected by the air
fluorescence telescopes monitoring the volume of the atmosphere above the surface particle detectors.

2.13.4 Pion and pair production in proton-proton collisions

Similar pair and pion production effects take place also in proton-proton collisions. Kinematics of the
reaction allows to calculate the threshold. For example, in the case of pion production reaction the
threshold is

Ep,thr = mp

(
1 +

m2
π + 4mπmp

2mp

2
)

(2.198)
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this gives numerically
Ekin = Ep,thr −mp ' 280 MeV (2.199)

The cross-section of this reaction is also determined by the strong interactions and is about the
geometrical cross-section of the proton,

σpp ' 4× 10−26 cm....10−25 cm (2.200)

depending on (growing with) the proton energy, see Fig. 2.28.

Figure 2.28: Cross-section of proton-proton colli-
sions.

As an example,we could consider propaga-
tion of cosmic ray protons in the interstellar
medium. Typical density of the interstellar
medium around us is nISM ∼ 1 cm−3. The mean
free path of the proton is

λpp '
1

σppnISM
' 3− 10 Mpc (2.201)

Inelasticity of the reaction in the case of proton-
proton collisions is quite high, κ ' 0.5, so that
single collision takes away a sizeable fraction of
the proton energy. The cooling time due to the
pion production process is about (1−3)×108 yr.
This is somewhat longer than the residence time
of cosmic rays in the Galaxy, but still, a frac-
tion of cosmic rays interacts in the Galactic Disk
before escaping from it.

Neutral and charged pions π0, π± are unsta-
ble particles which decay into γ-rays, π0 → 2γ,
neutrinos and muons π± → µ± + νµ. Muons, in
turn , are also unstable and decay into electrons
and neutrinos µ± → e± + νe + νµ. Thus, pion
production in pp collisions results in production

of γ-rays, neutrinos and high-energy electron / positrons.
Gamma-ray emission induced by interactions of cosmic rays with the protons from the interstellar

medium is the main source of high-energy γ-rays from the Milky Way galaxy, see Fig. 2.29.



2.13. INTERACTIONS OF HIGH-ENERGY PROTONS 59

Figure 2.29: Fermi/LAT map of the sky in the energy range above 1 GeV. Diffuse emission from the
Galactic Plane is dominated by the signal from interactions of cosmic ray protons with the interstellar
medium with production of pions.

Abbreviations

AGN Active Galactic Nucleus
FR I, FR II Fanaroff-Riley radio galaxy, type I or type II
GRB Gamma-Ray Burst
HMXRB High-Mass X-ray Binary
LMXRB Low-Mass X-ray Binary
PSR Pulsar (name in astronomical catalogues)
PWN Pulsar Wind Nebula
QSO Quasi-Stellar Object (name in astronomical catalogues)
SNR Supernova Remnant
Sy I, Sy II Seyfert galaxy, type I or II
XRB X-Ray Binary
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