Module: denclue_deblending¶
Overview¶
This module provides the implementation of the Table
Classes and Inheritance Structure¶
- mary::
- Table
Summary¶
DoDENCLUEDeblendingTask |
Methods |
do_denclue_deblending |
This function implements the top-level algorithm for the Denclue-based deblending: * each parent cluster in the cluster_list is partitioned by the do_denclue_of_cluster() function. |
do_denclue_of_cluster |
This function sets-up the parameters for the DENCLUE partitioning of the parent clusters. |
gauss_laplace_down_sampling |
Performs the down sampling of the target coordinates to use in the Denclue. |
Module API¶
-
class
DoDENCLUEDeblendingTask
(name='denclue_deblending', func=<function do_denclue_deblending>, parser=None, process=None)[source]¶ Bases:
asterism.pipeline_manager.analysis_tasks.AnalysisTask
Methods
add_par
(name, \*\*kwargs)get_par_value
(name)list_parameters
()run
([extra_message])set_par
(name, \*\*kwargs)set_pars_from_parser
(args, argv, args_dict)start_message
([extra_message])stop_message
()
-
denclue_plot
(denclue_debl, parent_cluster, target_coordinates=None, target_coordinates_w_array=None)[source]¶
-
do_denclue_deblending
(clusters_list, eps=0.1, h_frac=0.2, h_min=1.0, h_max=None, kernel='gauss', gl_downsampling=False, h_grid=3, gl_th_rel=0.1, attr_dbs_eps=1.0, attr_dbs_K=4.0, min_size=9, mask_unchanged=0.5, k_table_size=None, R_max_frac=1.0, R_max_kern_th=None, plot=False, verbose=False, digitize_attractors=False)[source]¶ - This function implements the top-level algorithm for the Denclue-based deblending:
- each parent cluster in the cluster_list is partitioned by the
do_denclue_of_cluster()
function. - the parent cluster with his children clusters are used to build
DeblendedProducts
object - a list of class:DeblendedProducts object is returned
- each parent cluster in the cluster_list is partitioned by the
Parameters: clusters_list
eps
h_frac
kernel
gl_downsampling
attr_dbs_eps
attr_dbs_K
children_min_frac_integ_flux
children_min_frac_peak_flux
children_min_frac_size
children_bright_frac_peak_flux
min_size
mask_unchanged
k_table_size
R_max_frac
R_max_kern_th
plot
denclue_catalog
verbose
do_denclue_deblending
out_catalog
digitize_attractors
-
do_denclue_of_cluster
(parent_cluster, min_size, kernel, eps, h_frac, h_min, attr_dbs_K, attr_dbs_eps, mask_unchanged, k_table_size, R_max_frac, R_max_kern_th, gl_th_rel=0.1, h_max=None, plot=False, digitize_attractors=False, gl_downsampling=False, h_grid=3, verbose=False)[source]¶ This function sets-up the parameters for the
DENCLUE
partitioning of the parent clusters. The following features areParameters: parent_cluster
min_size
kernel
eps
h_frac
attr_dbs_K
attr_dbs_eps
mask_unchanged
k_table_size
R_max_frac
R_max_kern_th
plot
digitize_attractors
gl_downsampling
-
gauss_laplace_down_sampling
(parent_cluster, h, verbose=False, gl_th_rel=0.1, h_grid=3)[source]¶ Performs the down sampling of the target coordinates to use in the Denclue.
the cluster image is extracted
local maxima are extracted using the
BlobDetectionGaussLaplace
- if number of local maxima is leq 1 then
- target_coordinates are set to None
- target_coordinates_w_array are set to None
- if number of local maxima is geq 2 then
- target_coordinates are obtained from a grid with size = max(1,h*0.5)
- target_coordinates_w_array are obtained from the image flux at grid coordinates
- coordinates and w_array corresponding to local maxima are added to the target arrays
Parameters: parent_cluster :
h : float
sets the side of the grid and the max_sigma=h, and min_sigma=h*0.5 used in the
BlobDetectionGaussLaplace
Returns: target_coordinates :
target_coordinates_w_array :