Module: dbscan_unbinned

class DBSCANUnbinned(eps, K, buffer_size=None, metric='euclidean', check_core_is_already_cluster_min_size=100, K_pix=False)[source]

Bases: asterism.core.clustering.density_based.dbscan.BaseDBSCAN

Methods

build_cluster(cluster_ID, cluster_members_list)
check_core_is_already_cluster(core_list)
dist_eval(index[, selected])
expand_list(list_to_expand, candidate_list)
get_buffer_mask(ID)
get_neigh(ID)
grow_core(core_seed)
run(position_array[, weight_array, ...])
scan(ID)
set_point_type(ID[, density_reach]) set point type (core,border,noise), according to local density and K
build_cluster(cluster_ID, cluster_members_list, IDs=None)[source]
check_core_is_already_cluster(core_list)[source]
dist_eval(index, selected=None)[source]
expand_list(list_to_expand, candidate_list)[source]
get_buffer_mask(ID)[source]
get_neigh(ID)[source]
grow_core(core_seed)[source]
run(position_array, weight_array=None, store_position_array_IDs=False, verbose=False)[source]
scan(ID)[source]
set_point_type(ID, density_reach=False)[source]

set point type (core,border,noise), according to local density and K Args:

ID: neigh_id_array: density_reach:

Returns: